GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2001
    In:  Proceedings of the National Academy of Sciences Vol. 98, No. 18 ( 2001-08-28), p. 10493-10498
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 98, No. 18 ( 2001-08-28), p. 10493-10498
    Abstract: Resistance gene Cf-9 of cultivated tomato ( Lycopersicon esculentum ) confers recognition of the AVR9 elicitor protein of the fungal pathogen Cladosporium fulvum . The Cf-9 locus, containing Cf-9 and four homologs ( Hcr9 s), originates from Lycopersicon pimpinellifolium ( Lp ). We examined naturally occurring polymorphism in Hcr9 s that confer AVR9 recognition in the Lp population. AVR9 recognition occurs frequently throughout this population. In addition to Cf-9, we discovered a second gene in Lp , designated 9DC, which also confers AVR9 recognition. Compared with Cf-9 , 9DC is more polymorphic, occurs more frequently, and is more widely spread throughout the Lp population, suggesting that 9DC is older than Cf-9 . The sequences of Cf-9 and 9DC suggest that Cf-9 evolved from 9DC by intragenic recombination between 9DC and another Hcr9. The fact that the 9DC and Cf-9 proteins differ in 61 aa residues, and both mediate recognition of AVR9, shows that in nature Hcr9 proteins with the same recognitional specificity can vary significantly.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2001
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 25 ( 2012-06-19), p. 10119-10124
    Abstract: Plants lack the seemingly unlimited receptor diversity of a somatic adaptive immune system as found in vertebrates and rely on only a relatively small set of innate immune receptors to resist a myriad of pathogens. Here, we show that disease-resistant tomato plants use an efficient mechanism to leverage the limited nonself recognition capacity of their innate immune system. We found that the extracellular plant immune receptor protein Cf-2 of the red currant tomato ( Solanum pimpinellifolium ) has acquired dual resistance specificity by sensing perturbations in a common virulence target of two independently evolved effectors of a fungus and a nematode. The Cf-2 protein, originally identified as a monospecific immune receptor for the leaf mold fungus Cladosporium fulvum , also mediates disease resistance to the root parasitic nematode Globodera rostochiensis pathotype Ro1-Mierenbos. The Cf-2–mediated dual resistance is triggered by effector-induced perturbations of the apoplastic Rcr3 pim protein of S. pimpinellifolium . Binding of the venom allergen-like effector protein Gr-VAP1 of G. rostochiensis to Rcr3 pim perturbs the active site of this papain-like cysteine protease. In the absence of the Cf-2 receptor, Rcr3 pim increases the susceptibility of tomato plants to G. rostochiensis , thus showing its role as a virulence target of these nematodes. Furthermore, both nematode infection and transient expression of Gr-VAP1 in tomato plants harboring Cf-2 and Rcr3 pim trigger a defense-related programmed cell death in plant cells. Our data demonstrate that monitoring host proteins targeted by multiple pathogens broadens the spectrum of disease resistances mediated by single plant immune receptors.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2010
    In:  Proceedings of the National Academy of Sciences Vol. 107, No. 16 ( 2010-04-20), p. 7610-7615
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 16 ( 2010-04-20), p. 7610-7615
    Abstract: Most fungal effectors characterized so far are species-specific and facilitate virulence on a particular host plant. During infection of its host tomato, Cladosporium fulvum secretes effectors that function as virulence factors in the absence of cognate Cf resistance proteins and induce effector-triggered immunity in their presence. Here we show that homologs of the C. fulvum Avr4 and Ecp2 effectors are present in other pathogenic fungi of the Dothideomycete class, including Mycosphaerella fijiensis , the causal agent of black Sigatoka disease of banana. We demonstrate that the Avr4 homolog of M. fijiensis is a functional ortholog of C. fulvum Avr4 that protects fungal cell walls against hydrolysis by plant chitinases through binding to chitin and, despite the low overall sequence homology, triggers a Cf-4-mediated hypersensitive response (HR) in tomato. Furthermore, three homologs of C. fulvum Ecp2 are found in M. fijiensis , one of which induces different levels of necrosis or HR in tomato lines that lack or contain a putative cognate Cf-Ecp2 protein, respectively. In contrast to Avr4, which acts as a defensive virulence factor, M. fijiensis Ecp2 likely promotes virulence by interacting with a putative host target causing host cell necrosis, whereas Cf-Ecp2 could possibly guard the virulence target of Ecp2 and trigger a Cf-Ecp2-mediated HR. Overall our data suggest that Avr4 and Ecp2 represent core effectors that are collectively recognized by single cognate Cf-proteins. Transfer of these Cf genes to plant species that are attacked by fungi containing these cognate core effectors provides unique ways for breeding disease-resistant crops.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1998
    In:  Proceedings of the National Academy of Sciences Vol. 95, No. 15 ( 1998-07-21), p. 9014-9018
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 95, No. 15 ( 1998-07-21), p. 9014-9018
    Abstract: The interaction between tomato and its fungal pathogen Cladosporium fulvum complies with the gene-for-gene system, in which specific recognition of fungal proteins by plant genotypes with matching resistance genes results in host resistance. Two proteins, ECP1 and ECP2, secreted by C. fulvum during infection, are required for full virulence of the fungus on tomato. We chose the most important virulence factor, ECP2, for a targeted search for hypersensitive response (HR)-based resistance among a collection of tomato genotypes. By screening with recombinant potato virus X that expresses the Ecp 2 gene, we identified four lines that respond with HR toward ECP2. The capacity to recognize ECP2 and induce HR is sufficient to confer resistance in tomato against C. fulvum producing ECP2. Resistance is based on a single dominant gene, which we have designated Cf-ECP2 , for resistance to C. fulvum through recognition of ECP2. Accordingly, an Ecp 2-minus strain created by gene replacement is pathogenic on Cf-ECP2 plants. However, due to lack of ECP2 the mutant strain is only weakly virulent. All strains of a worldwide collection of C. fulvum strains that were tested were found to produce a HR-inducing ECP2 protein. Because the Cf-ECP2 gene operates through recognition of an important virulence factor, we expect it will confer durable resistance against C. fulvum . A similar targeted approach should allow the discovery of new valuable resistance genes in other pathosystems.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1998
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 25 ( 2016-06-21), p. 6851-6856
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 25 ( 2016-06-21), p. 6851-6856
    Abstract: Anthraquinones are a large family of secondary metabolites (SMs) that are extensively studied for their diverse biological activities. These activities are determined by functional group decorations and the formation of dimers from anthraquinone monomers. Despite their numerous medicinal qualities, very few anthraquinone biosynthetic pathways have been elucidated so far, including the enzymatic dimerization steps. In this study, we report the elucidation of the biosynthesis of cladofulvin, an asymmetrical homodimer of nataloe-emodin produced by the fungus Cladosporium fulvum . A gene cluster of 10 genes controls cladofulvin biosynthesis, which begins with the production of atrochrysone carboxylic acid by the polyketide synthase ClaG and the β-lactamase ClaF. This compound is decarboxylated by ClaH to yield emodin, which is then converted to chrysophanol hydroquinone by the reductase ClaC and the dehydratase ClaB. We show that the predicted cytochrome P450 ClaM catalyzes the dimerization of nataloe-emodin to cladofulvin. Remarkably, such dimerization dramatically increases nataloe-emodin cytotoxicity against mammalian cell lines. These findings shed light on the enzymatic mechanisms involved in anthraquinone dimerization. Future characterization of the ClaM enzyme should facilitate engineering the biosynthesis of novel, potent, dimeric anthraquinones and structurally related compound families.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...