GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (13)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1999
    In:  Proceedings of the National Academy of Sciences Vol. 96, No. 16 ( 1999-08-03), p. 9136-9141
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 96, No. 16 ( 1999-08-03), p. 9136-9141
    Abstract: Activation of CD40 is essential for thymus-dependent humoral immune responses and rescuing B cells from apoptosis. Many of the effects of CD40 are believed to be achieved through altered gene expression. In addition to Bcl-x, a known CD40-regulated antiapoptotic molecule, we identified a related antiapoptotic molecule, A1/Bfl-1, as a CD40-inducible gene. Inhibition of the NF-κB pathway by overexpression of a dominant-active inhibitor of NF-κB abolished CD40-induced up-regulation of both the Bfl-1 and Bcl-x genes and also eliminated the ability of CD40 to rescue Fas-induced cell death. Within the upstream promoter region of Bcl-x, a potential NF-κB-binding sequence was found to support NF-κB-dependent transcriptional activation. Furthermore, expression of physiological levels of Bcl-x protected B cells from Fas-mediated apoptosis in the absence of NF-κB signaling. Thus, our results suggest that CD40-mediated cell survival proceeds through NF-κB-dependent up-regulation of Bcl-2 family members.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1999
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 46 ( 2016-11-15), p. 13015-13020
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 46 ( 2016-11-15), p. 13015-13020
    Abstract: STAT6 participates in classical IL-4/IL-13 signaling and stimulator of interferon genes-mediated antiviral innate immune responses. Aberrations in STAT6-mediated signaling are linked to development of asthma and diseases of the immune system. In addition, STAT6 remains constitutively active in multiple types of cancer. Therefore, targeting STAT6 is an attractive proposition for treating related diseases. Although a lot is known about the role of STAT6 in transcriptional regulation, molecular details on how STAT6 recognizes and binds specific segments of DNA to exert its function are not clearly understood. Here, we report the crystal structures of a homodimer of phosphorylated STAT6 core fragment (STAT6 CF ) alone and bound with the N3 and N4 DNA binding site. Analysis of the structures reveals that STAT6 undergoes a dramatic conformational change on DNA binding, which was further validated by performing molecular dynamics simulation studies and small angle X-ray scattering analysis. Our data show that a larger angle at the intersection where the two protomers of STAT meet and the presence of a unique residue, H415, in the DNA-binding domain play important roles in discrimination of the N4 site DNA from the N3 site by STAT6. H415N mutation of STAT6 CF decreased affinity of the protein for the N4 site DNA, but increased its affinity for N3 site DNA, both in vitro and in vivo. Results of our structure–function studies on STAT6 shed light on mechanism of DNA recognition by STATs in general and explain the reasons underlying STAT6’s preference for N4 site DNA over N3.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2008
    In:  Proceedings of the National Academy of Sciences Vol. 105, No. 9 ( 2008-03-04), p. 3503-3508
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 9 ( 2008-03-04), p. 3503-3508
    Abstract: Articles in recent years have described two separate and distinct NF-κB activation pathways that result in the differential activation of p50- or p52-containing NF-κB complexes. Studies examining tumor-necrosis factor receptor-associated factors (TRAFs) have identified positive roles for TRAF2, TRAF5, and TRAF6, but not TRAF3, in canonical (p50-dependent) NF-κB activation. Conversely, it recently was reported that TRAF3 functions as an essential negative regulator of the noncanonical (p52-dependent) NF-κB pathway. In this article, we provide evidence that TRAF3 potently suppresses canonical NF-κB activation and gene expression in vitro and in vivo . We also demonstrate that deregulation of the canonical NF-κB pathway in TRAF3-deficient cells results from accumulation of NF-κB-inducing kinase (NIK), the essential kinase mediating noncanonical NF-κB activation. Thus, our data demonstrate that inhibition of TRAF3 results in coordinated activation of both NF-κB activation pathways.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2002
    In:  Proceedings of the National Academy of Sciences Vol. 99, No. 3 ( 2002-02-05), p. 1497-1502
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 99, No. 3 ( 2002-02-05), p. 1497-1502
    Abstract: CD40/CD40L interaction is essential for multiple biological events in T dependent humoral immune responses, including B cell survival and proliferation, germinal center and memory B cell formation, and antibody isotype switching and affinity maturation. By using high-density microarrays, we examined gene expression in primary mouse B lymphocytes after multiple time points of CD40L stimulation. In addition to genes involved in cell survival and growth, which are also induced by other mitogens such as lipopolysaccharide, CD40L specifically activated genes involved in germinal center formation and T cell costimulatory molecules that facilitate T dependent humoral immunity. Next, by examining the roles of individual CD40-activated signal transduction pathways, we dissected the overall CD40-mediated response into genes independently regulated by the individual pathways or collectively by all pathways. We also found that gene down-regulation is a significant part of the overall response and that the p38 pathway plays an important role in this process, whereas the NF-κB pathway is important for the up-regulation of primary response genes. Our finding of overlapping independent control of gene expression modules by different pathways suggests, in principle, that distinct biological behaviors that depend on distinct gene expression subsets can be manipulated by targeting specific signaling pathways.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2002
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2021
    In:  Proceedings of the National Academy of Sciences Vol. 118, No. 37 ( 2021-09-14)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 37 ( 2021-09-14)
    Abstract: COVID-19, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), has presented a serious risk to global public health. The viral main protease M pro (also called 3Cl pro ) encoded by NSP5 is an enzyme essential for viral replication. However, very few host proteins have been experimentally validated as targets of 3Clpro. Here, through bioinformatics analysis of 300 interferon stimulatory genes (ISGs) based on the prediction method NetCorona, we identify RNF20 (Ring Finger Protein 20) as a novel target of 3Clpro. We have also provided evidence that 3Clpro, but not the mutant 3Clpro C145A without catalytic activity, cleaves RNF20 at a conserved Gln521 across species, which subsequently prevents SREBP1 from RNF20-mediated degradation and promotes SARS-CoV-2 replication. We show that RNA interference (RNAi)-mediated depletion of either RNF20 or RNF40 significantly enhances viral replication, indicating the antiviral role of RNF20/RNF40 complex against SARS-CoV-2. The involvement of SREBP1 in SARS-CoV-2 infection is evidenced by a decrease of viral replication in the cells with SREBP1 knockdown and inhibitor AM580. Taken together, our findings reveal RNF20 as a novel host target for SARS-CoV-2 main protease and indicate that 3Clpro inhibitors may treat COVID-19 through not only blocking viral polyprotein cleavage but also enhancing host antiviral response.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2008
    In:  Proceedings of the National Academy of Sciences Vol. 105, No. 13 ( 2008-04), p. 5105-5110
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 13 ( 2008-04), p. 5105-5110
    Abstract: A mixture of drugs is often more effective than using a single effector. However, it is extremely challenging to identify potent drug combinations by trial and error because of the large number of possible combinations and the inherent complexity of the underlying biological network. With a closed-loop optimization modality, we experimentally demonstrate effective searching for potent drug combinations for controlling cellular functions through a large parametric space. Only tens of iterations out of one hundred thousand possible trials were needed to determine a potent combination of drugs for inhibiting vesicular stomatitis virus infection of NIH 3T3 fibroblasts. In addition, the drug combination reduced the required dosage by ≈10-fold compared with individual drugs. In another example, a potent mixture was identified in thirty iterations out of a possible million combinations of six cytokines that regulate the activity of nuclear factor kappa B in 293T cells. The closed-loop optimization approach possesses the potential of being an effective approach for manipulating a wide class of biological systems.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 22 ( 2013-05-28), p. 9054-9059
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 22 ( 2013-05-28), p. 9054-9059
    Abstract: Negative-stranded RNA viruses cover their genome with nucleoprotein (N) to protect it from the human innate immune system. Abrogation of the function of N offers a unique opportunity to combat the spread of the viruses. Here, we describe a unique fold of N from Leanyer virus (LEAV, Orthobunyavirus genus, Bunyaviridae family) in complex with single-stranded RNA refined to 2.78 Å resolution as well as a 2.68 Å resolution structure of LEAV N–ssDNA complex. LEAV N is made up of an N- and a C-terminal lobe, with the RNA binding site located at the junction of these lobes. The LEAV N tetramer binds a 44-nucleotide-long single-stranded RNA chain. Hence, oligomerization of N is essential for encapsidation of the entire genome and is accomplished by using extensions at the N and C terminus. Molecular details of the oligomerization of N are illustrated in the structure where a circular ring-like tertiary assembly of a tetramer of LEAV N is observed tethering the RNA in a positively charged cavity running along the inner edge. Hydrogen bonds between N and the C2 hydroxyl group of ribose sugar explain the specificity of LEAV N for RNA over DNA. In addition, base-specific hydrogen bonds suggest that some regions of RNA bind N more tightly than others. Hinge movements around F20 and V125 assist in the reversal of capsidation during transcription and replication of the virus. Electron microscopic images of the ribonucleoprotein complexes of LEAV N reveal a filamentous assembly similar to those found in phleboviruses.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1999
    In:  Proceedings of the National Academy of Sciences Vol. 96, No. 4 ( 1999-02-16), p. 1421-1426
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 96, No. 4 ( 1999-02-16), p. 1421-1426
    Abstract: Several tumor necrosis factor receptor-associated factor (TRAF) family proteins including TRAF2, TRAF3, TRAF5, and TRAF6, as well as Jak3, have been implicated as potential mediators of CD40 signaling. An extensive in vitro binding study indicated that TRAF2 and TRAF3 bind to the CD40 cytoplasmic tail (CD40ct) with much higher affinity than TRAF5 and TRAF6 and that TRAF2 and TRAF3 bind to different residues of the CD40ct. Using CD40 mutants incapable of binding TRAF2, TRAF3, or Jak3, we found that the TRAF2-binding site of the CD40ct is critical for NF-κB and stress-activated protein kinase activation, as well as the up-regulation of the intercellular adhesion molecule-1 (ICAM-1) gene, whereas binding of TRAF3 and Jak3 is dispensable for all of these functions. Overexpression of a dominantly active IκBα strongly inhibited CD40-induced NF-κB activation, ICAM-1 promoter activity, and cell-surface ICAM-1 up-regulation. These studies suggest a potential signal transduction pathway from the CD40 receptor to the transcriptional activation of the ICAM-1 gene.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1999
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 50 ( 2013-12-10)
    Abstract: Pathogenic microorganisms and toxins have evolved a variety of mechanisms to gain access to the host-cell cytosol and thereby exert virulent effects upon the host. One common mechanism of cellular entry requires trafficking to an acidified endosome, which promotes translocation across the host membrane. To identify small-molecule inhibitors that block this process, a library of 30,000 small molecules was screened for inhibitors of anthrax lethal toxin. Here we report that 4-bromobenzaldehyde N -(2,6-dimethylphenyl)semicarbazone, the most active compound identified in the screen, inhibits intoxication by lethal toxin and blocks the entry of multiple other acid-dependent bacterial toxins and viruses into mammalian cells. This compound, which we named EGA, also delays lysosomal targeting and degradation of the EGF receptor, indicating that it targets host-membrane trafficking. In contrast, EGA does not block endosomal recycling of transferrin, retrograde trafficking of ricin, phagolysosomal trafficking, or phagosome permeabilization by Franciscella tularensis . Furthermore, EGA does not neutralize acidic organelles, demonstrating that its mechanism of action is distinct from pH-raising agents such as ammonium chloride and bafilomycin A1. EGA is a powerful tool for the study of membrane trafficking and represents a class of host-targeted compounds for therapeutic development to treat infectious disease.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2004
    In:  Proceedings of the National Academy of Sciences Vol. 101, No. 21 ( 2004-05-25), p. 8108-8113
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 101, No. 21 ( 2004-05-25), p. 8108-8113
    Abstract: B lymphocytes can be activated by many different stimuli. However, the mechanisms responsible for the signaling and functional specificities of individual stimuli remain to be elucidated. Here, we have compared the contribution of the type 1 (p50-dependent) and type 2 (p52-dependent) NF-κB activation pathways to cell survival, proliferation, homotypic aggregation, and specific gene regulation of murine primary B lymphocytes. Whereas lipopolysaccharide (LPS) and B cell activation factor (BAFF) mainly activate the type 1 or type 2 pathways, respectively, CD40 ligand (CD40L) strongly activates both. Rescue of spontaneous apoptosis is diminished in p52 –/– B cells after BAFF stimulation and in p50 –/– c-Rel –/– B cells after LPS stimulation. Interestingly, significant CD40-induced B cell survival is still observed even in p50 –/– c-Rel –/– p65 –/+ B cells, which is correlated with the ability of CD40L to up-regulate Bcl-x L expression in these cells. CD40L- and LPS-induced B cell proliferation, as well as up-regulation of proliferation-related genes, however, are greatly reduced in c-Rel –/– and p50 –/– c-Rel –/– B cells but are normal in p52 –/– B cells. We have further demonstrated that both c-Rel and p52 are required for CD40-mediated B cell homotypic aggregation, which explains well why neither LPS nor BAFF has this function. Overall, our studies suggest that both type 1 and type 2 NF-κB pathways contribute to the gene expression and biological program unique for CD40 in B cell activation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2004
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...