GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (25)
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 7 ( 2014-02-18), p. 2626-2631
    Abstract: Mutations in leucine-rich repeat kinase 2 ( LRRK2 ) cause inherited Parkinson disease (PD), and common variants around LRRK2 are a risk factor for sporadic PD. Using protein–protein interaction arrays, we identified BCL2-associated athanogene 5, Rab7L1 (RAB7, member RAS oncogene family-like 1), and Cyclin-G–associated kinase as binding partners of LRRK2. The latter two genes are candidate genes for risk for sporadic PD identified by genome-wide association studies. These proteins form a complex that promotes clearance of Golgi-derived vesicles through the autophagy–lysosome system both in vitro and in vivo. We propose that three different genes for PD have a common biological function. More generally, data integration from multiple unbiased screens can provide insight into human disease mechanisms.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 18 ( 2010-05-04), p. 8404-8409
    Abstract: A recently identified variant within the fat mass and obesity-associated ( FTO ) gene is carried by 46% of Western Europeans and is associated with an ~1.2 kg higher weight, on average, in adults and an ~1 cm greater waist circumference. With 〉 1 billion overweight and 300 million obese persons worldwide, it is crucial to understand the implications of carrying this very common allele for the health of our aging population. FTO is highly expressed in the brain and elevated body mass index (BMI) is associated with brain atrophy, but it is unknown how the obesity-associated risk allele affects human brain structure. We therefore generated 3D maps of regional brain volume differences in 206 healthy elderly subjects scanned with MRI and genotyped as part of the Alzheimer's Disease Neuroimaging Initiative. We found a pattern of systematic brain volume deficits in carriers of the obesity-associated risk allele versus noncarriers. Relative to structure volumes in the mean template, FTO risk allele carriers versus noncarriers had an average brain volume difference of ~8% in the frontal lobes and 12% in the occipital lobes—these regions also showed significant volume deficits in subjects with higher BMI. These brain differences were not attributable to differences in cholesterol levels, hypertension, or the volume of white matter hyperintensities; which were not detectably higher in FTO risk allele carriers versus noncarriers. These brain maps reveal that a commonly carried susceptibility allele for obesity is associated with structural brain atrophy, with implications for the health of the elderly.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 13 ( 2016-03-29), p. 3453-3458
    Abstract: Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23–14 Mya) is a compelling interval to study as global temperatures and atmospheric CO 2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3–4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO 2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO 2 . These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO 2 during the early to mid-Miocene.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 5 ( 2020-02-04), p. 2560-2569
    Abstract: De novo mutations (DNMs), or mutations that appear in an individual despite not being seen in their parents, are an important source of genetic variation whose impact is relevant to studies of human evolution, genetics, and disease. Utilizing high-coverage whole-genome sequencing data as part of the Trans-Omics for Precision Medicine (TOPMed) Program, we called 93,325 single-nucleotide DNMs across 1,465 trios from an array of diverse human populations, and used them to directly estimate and analyze DNM counts, rates, and spectra. We find a significant positive correlation between local recombination rate and local DNM rate, and that DNM rate explains a substantial portion (8.98 to 34.92%, depending on the model) of the genome-wide variation in population-level genetic variation from 41K unrelated TOPMed samples. Genome-wide heterozygosity does correlate with DNM rate, but only explains 〈 1% of variation. While we are underpowered to see small differences, we do not find significant differences in DNM rate between individuals of European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed individuals. However, we did find significantly fewer DNMs in Amish individuals, even when compared with other Europeans, and even after accounting for parental age and sequencing center. Specifically, we found significant reductions in the number of C→A and T→C mutations in the Amish, which seem to underpin their overall reduction in DNMs. Finally, we calculated near-zero estimates of narrow sense heritability ( h 2 ), which suggest that variation in DNM rate is significantly shaped by nonadditive genetic effects and the environment.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 8 ( 2018-02-20), p. 1697-1706
    Abstract: Alzheimer’s disease (AD) is a leading cause of mortality among the elderly. We performed a whole-genome sequencing study of AD in the Chinese population. In addition to the variants identified in or around the APOE locus (sentinel variant rs73052335, P = 1.44 × 10 −14 ), two common variants, GCH1 (rs72713460, P = 4.36 × 10 −5 ) and KCNJ15 (rs928771, P = 3.60 × 10 −6 ), were identified and further verified for their possible risk effects for AD in three small non-Asian AD cohorts. Genotype–phenotype analysis showed that KCNJ15 variant rs928771 affects the onset age of AD, with earlier disease onset in minor allele carriers. In addition, altered expression level of the KCNJ15 transcript can be observed in the blood of AD subjects. Moreover, the risk variants of GCH1 and KCNJ15 are associated with changes in their transcript levels in specific tissues, as well as changes of plasma biomarkers levels in AD subjects. Importantly, network analysis of hippocampus and blood transcriptome datasets suggests that the risk variants in the APOE , GCH1 , and KCNJ15 loci might exert their functions through their regulatory effects on immune-related pathways. Taking these data together, we identified common variants of GCH1 and KCNJ15 in the Chinese population that contribute to AD risk. These variants may exert their functional effects through the immune system.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 11 ( 2009-03-17), p. 4337-4342
    Abstract: For more than 2 centuries active immunotherapy has been at the forefront of efforts to prevent infectious disease [Waldmann TA (2003) Nat Med 9:269–277]. However, the decreased ability of the immune system to mount a robust immune response to self-antigens has made it more difficult to generate therapeutic vaccines against cancer or chronic degenerative diseases. Recently, we showed that the site-specific incorporation of an immunogenic unnatural amino acid into an autologous protein offers a simple and effective approach to overcome self-tolerance. Here, we characterize the nature and durability of the polyclonal IgG antibody response and begin to establish the generality of p -nitrophenylalanine (pNO 2 Phe)-induced loss of self-tolerance. Mutation of several surface residues of murine tumor necrosis factor-α (mTNF-α) independently to pNO 2 Phe leads to a T cell-dependent polyclonal and sustainable anti-mTNF-α IgG autoantibody response that lasts for at least 40 weeks. The antibodies bind multiple epitopes on mTNF-α and protect mice from severe endotoxemia induced by lipopolysaccharide (LPS) challenge. Immunization of mice with a pNO 2 Phe 43 mutant of murine retinol-binding protein (RBP4) also elicited a high titer IgG antibody response, which was cross-reactive with wild-type mRBP4. These findings suggest that this may be a relatively general approach to generate effective immunotherapeutics against cancer-associated or other weakly immunogenic antigens.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 39 ( 2016-09-27)
    Abstract: Complex physiological and behavioral traits, including neurological and psychiatric disorders, often associate with distributed anatomical variation. This paper introduces a global metric, called morphometricity, as a measure of the anatomical signature of different traits. Morphometricity is defined as the proportion of phenotypic variation that can be explained by macroscopic brain morphology. We estimate morphometricity via a linear mixed-effects model that uses an anatomical similarity matrix computed based on measurements derived from structural brain MRI scans. We examined over 3,800 unique MRI scans from nine large-scale studies to estimate the morphometricity of a range of phenotypes, including clinical diagnoses such as Alzheimer’s disease, and nonclinical traits such as measures of cognition. Our results demonstrate that morphometricity can provide novel insights about the neuroanatomical correlates of a diverse set of traits, revealing associations that might not be detectable through traditional statistical techniques.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 12 ( 2013-03-19), p. 4768-4773
    Abstract: Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism ( MACROD2 ), development ( NEDD4 ), and mental retardation ( UBE2A ) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 7 ( 2018-02-13), p. 1481-1486
    Abstract: When sample sizes are small, the ability to identify weak (but scientifically interesting) associations between a set of predictors and a response may be enhanced by pooling existing datasets. However, variations in acquisition methods and the distribution of participants or observations between datasets, especially due to the distributional shifts in some predictors, may obfuscate real effects when datasets are combined. We present a rigorous statistical treatment of this problem and identify conditions where we can correct the distributional shift. We also provide an algorithm for the situation where the correction is identifiable. We analyze various properties of the framework for testing model fit, constructing confidence intervals, and evaluating consistency characteristics. Our technical development is motivated by Alzheimer’s disease (AD) studies, and we present empirical results showing that our framework enables harmonizing of protein biomarkers, even when the assays across sites differ. Our contribution may, in part, mitigate a bottleneck that researchers face in clinical research when pooling smaller sized datasets and may offer benefits when the subjects of interest are difficult to recruit or when resources prohibit large single-site studies.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 15 ( 2020-04-14), p. 8515-8523
    Abstract: Stromal-epithelial interactions dictate cancer progression and therapeutic response. Prostate cancer (PCa) cells were identified to secrete greater concentration of mitochondrial DNA (mtDNA) compared to noncancer epithelia. Based on the recognized coevolution of cancer-associated fibroblasts (CAF) with tumor progression, we tested the role of cancer-derived mtDNA in a mechanism of paracrine signaling. We found that prostatic CAF expressed DEC205, which was not expressed by normal tissue-associated fibroblasts. DEC205 is a transmembrane protein that bound mtDNA and contributed to pattern recognition by Toll-like receptor 9 (TLR9). Complement C3 was the dominant gene targeted by TLR9-induced NF-κB signaling in CAF. The subsequent maturation complement C3 maturation to anaphylatoxin C3a was dependent on PCa epithelial inhibition of catalase in CAF. In a syngeneic tissue recombination model of PCa and associated fibroblast, the antagonism of the C3a receptor and the fibroblastic knockout of TLR9 similarly resulted in immune suppression with a significant reduction in tumor progression, compared to saline-treated tumors associated with wild-type prostatic fibroblasts. Interestingly, docetaxel, a common therapy for advanced PCa, further promoted mtDNA secretion in cultured epithelia, mice, and PCa patients. The antiapoptotic signaling downstream of anaphylatoxin C3a signaling in tumor cells contributed to docetaxel resistance. The inhibition of C3a receptor sensitized PCa epithelia to docetaxel in a synergistic manner. Tumor models of human PCa epithelia with CAF expanded similarly in mice in the presence or absence of docetaxel. The combination therapy of docetaxel and C3 receptor antagonist disrupted the mtDNA/C3a paracrine loop and restored docetaxel sensitivity.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...