GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (5)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2015
    In:  Proceedings of the National Academy of Sciences Vol. 112, No. 7 ( 2015-02-17)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 7 ( 2015-02-17)
    Abstract: The large phylogenetic distance separating eukaryotic genes and their archaeal orthologs has prevented identification of the position of the eukaryotic root in phylogenomic studies. Recently, an innovative approach has been proposed to circumvent this issue: the use as phylogenetic markers of proteins that have been transferred from bacterial donor sources to eukaryotes, after their emergence from Archaea. Using this approach, two recent independent studies have built phylogenomic datasets based on bacterial sequences, leading to different predictions of the eukaryotic root. Taking advantage of additional genome sequences from the jakobid Andalucia godoyi and the two known malawimonad species ( Malawimonas jakobiformis and Malawimonas californiana ), we reanalyzed these two phylogenomic datasets. We show that both datasets pinpoint the same phylogenetic position of the eukaryotic root that is between “Unikonta” and “Bikonta,” with malawimonad and collodictyonid lineages on the Unikonta side of the root. Our results firmly indicate that ( i ) the supergroup Excavata is not monophyletic and ( ii ) the last common ancestor of eukaryotes was a biflagellate organism. Based on our results, we propose to rename the two major eukaryotic groups Unikonta and Bikonta as Opimoda and Diphoda, respectively.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2003
    In:  Proceedings of the National Academy of Sciences Vol. 100, No. 11 ( 2003-05-27), p. 6819-6824
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 100, No. 11 ( 2003-05-27), p. 6819-6824
    Abstract: Long-chain fatty acid uptake, which provides a large part of myocardial energy, is impaired in human and murine hearts deficient in the membrane fatty acid translocase, FAT/CD36. We examined myocardial function in CD36-null mice using the working heart. Fatty acid oxidation and stores of glycogen, triglycerides, and ATP were reduced in CD36-deficient hearts and were restored to WT levels by rescue of myocyte CD36. Under normal perfusion conditions, CD36-null hearts had similar cardiac outputs and end-diastolic pressures as WT or transgenic hearts. After 6 min of ischemia, cardiac output decreased by 41% and end diastolic pressure tripled for CD36-null hearts, with no significant changes in WT or transgenic hearts. Null hearts also failed more frequently after ischemia as compared with WT or transgenics. To dissect out contribution of fatty acid uptake, a perfusate-lacking fatty acids was used. This decreased cardiac output after ischemia by 30% in WT hearts as compared with 50% for CD36-deficient hearts. End diastolic pressure, a negative index of myocardial performance, increased after ischemia in all heart types. Addition to the perfusate of a medium-chain fatty acid (caprylic acid) that does not require CD36 for uptake alleviated poor ischemic tolerance of CD36-null hearts. In summary, recovery from ischemia is compromised in CD36-deficient hearts and can be restored by CD36 rescue or by supplying medium-chain fatty acids. It would be important to determine whether the findings apply to the human situation where polymorphisms of the CD36 gene are relatively common.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2003
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1990
    In:  Proceedings of the National Academy of Sciences Vol. 87, No. 20 ( 1990-10), p. 7866-7870
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 87, No. 20 ( 1990-10), p. 7866-7870
    Abstract: Androgen insensitivity is a disorder in which the correct androgen response in an androgen target cell is impaired. The clinical symptoms of this X chromosome-linked syndrome are presumed to be caused by mutations in the androgen receptor gene. We report a G----T mutation in the splice donor site of intron 4 of the androgen receptor gene of a 46,XY subject lacking detectable androgen binding to the receptor and with the complete form of androgen insensitivity. This point mutation completely abolishes normal RNA splicing at the exon 4/intron 4 boundary and results in the activation of a cryptic splice donor site in exon 4, which leads to the deletion of 123 nucleotides from the mRNA. Translation of the mutant mRNA results in an androgen receptor protein approximately 5 kDa smaller than the wild type. This mutated androgen receptor protein was unable to bind androgens and unable to activate transcription of an androgen-regulated reporter gene construct. This mutation in the human androgen receptor gene demonstrates the importance of an intact steroid-binding domain for proper androgen receptor functioning in vivo.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1990
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 27 ( 2013-07-02), p. 10946-10951
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 27 ( 2013-07-02), p. 10946-10951
    Abstract: To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymes having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. High-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1993
    In:  Proceedings of the National Academy of Sciences Vol. 90, No. 16 ( 1993-08-15), p. 7538-7542
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 90, No. 16 ( 1993-08-15), p. 7538-7542
    Abstract: B3(dsFv)-PE38KDEL is a recombinant immunotoxin composed of the Fv region of monoclonal antibody B3 connected to a truncated form of Pseudomonas exotoxin (PE38KDEL), in which the unstable Fv heterodimer (composed of heavy- and light-chain variable regions) is held together and stabilized by a disulfide bond [termed disulfide-stabilized Fv (dsFV)]. A computer modeled structure of the B3(Fv), made by mutating and energy minimizing the amino acid sequence and structure of McPC603, enabled us to identify positions in conserved framework regions that "hypothetically" could be used for disulfide stabilization without changing the structure or affecting antigen binding. This prediction was evaluated experimentally by constructing a disulfide-linked two-chain dsFv-immunotoxin that was produced in Escherichia coli. The activity and specificity of this immunotoxin was indistinguishable from its single-chain Fv (scFv) counterpart, indicating that, as in B3(scFv), the structure of the binding region is retained in B3(dsFv). Because we introduced the stabilizing disulfide bond in between two framework residues in a position that is conserved in most Fv molecules, this method of linkage between the heavy- and light-chain variable regions should be generally applicable to construct immunotoxins and dsFv molecules using other antibodies. Furthermore, the finding that B3(dsFv) was much more stable at 37 degrees C in human plasma than B3(scFv) indicates that dsFvs are possibly more versatile for therapeutic application than scFvs.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1993
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...