GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (14)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1998
    In:  Proceedings of the National Academy of Sciences Vol. 95, No. 17 ( 1998-08-18), p. 9813-9818
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 95, No. 17 ( 1998-08-18), p. 9813-9818
    Abstract: Protein functions have evolved in part via domain recombination events. Such events, for example, recombine structurally independent functional domains and shuffle targeting, regulatory, and/or catalytic functions. Domain recombination, however, can generate new functions, as implied by the observation of catalytic sites at interfaces of distinct folding domains. If useful to an evolving organism, such initially rudimentary functions would likely acquire greater efficiency and diversity, whereas the initially distinct folding domains would likely develop into single functional domains. This represents the probable evolution of the S1 serine protease family, whose two homologous β-barrel subdomains assemble to form the binding sites and the catalytic machinery. Among S1 family members, the contact interface and catalytic residues are highly conserved whereas surrounding surfaces are highly variable. This observation suggests a new strategy to engineer viable proteins with novel properties, by swapping folding subdomains chosen from among protein family members. Such hybrid proteins would retain properties conserved throughout the family, including folding stability as single domain proteins, while providing new surfaces amenable to directed evolution or engineering of specific new properties. We show here that recombining the N-terminal subdomain from coagulation factor X with the C-terminal subdomain from trypsin creates a potent enzyme (fXYa) with novel properties, in particular a broad substrate specificity. As shown by the 2.15-Å crystal structure, plasticity at the hydrophobic subdomain interface maintains activity, while surface loops are displaced compared with the parent subdomains. fXYa thus represents a new serine proteinase lineage with hybrid fX, trypsin, and novel properties.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1998
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 102, No. 24 ( 2005-06-14), p. 8597-8602
    Abstract: Here, we present a series of thrombin inhibitors that were generated by using powerful computer-assisted multiparameter optimization process. The process was organized in design cycles, starting with a set of randomly chosen molecules. Each cycle combined combinatorial synthesis, multiparameter characterization of compounds in a variety of bioassays, and algorithmic processing of the data to devise a set of compounds to be synthesized in the next cycle. The identified lead compounds exhibited thrombin inhibitory constants in the lower nanomolar range. They are by far the most selective synthetic thrombin inhibitors, with selectivities of 〉 100,000-fold toward other proteases such as Factor Xa, Factor XIIa, urokinase, plasmin, and Plasma kallikrein. Furthermore, these compounds exhibit a favorable profile, comprising nontoxicity, high metabolic stability, low serum protein binding, good solubility, high anticoagulant activity, and a slow and exclusively renal elimination from the circulation in a rat model. Finally, x-ray crystallographic analysis of a thrombin–inhibitor complex revealed a binding mode with a neutral moiety in the S1 pocket of thrombin.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2005
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2007
    In:  Proceedings of the National Academy of Sciences Vol. 104, No. 41 ( 2007-10-09), p. 16086-16091
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 41 ( 2007-10-09), p. 16086-16091
    Abstract: hK7 or human stratum corneum chymotryptic enzyme belongs to the human tissue kallikrein (hKs) serine proteinase family and is strongly expressed in the upper layers of the epidermis. It participates in skin desquamation but is also implicated in diverse skin diseases and is a potential biomarker of ovarian cancer. We have solved x-ray structures of recombinant active hK7 at medium and atomic resolution in the presence of the inhibitors succinyl-Ala-Ala-Pro-Phe-chloromethyl ketone and Ala-Ala-Phe-chloromethyl ketone. The most distinguishing features of hK7 are the short 70–80 loop and the unique S1 pocket, which prefers P1 Tyr residues, as shown by kinetic data. Similar to several other kallikreins, the enzyme activity is inhibited by Zn 2+ and Cu 2+ at low micromolar concentrations. Biochemical analyses of the mutants H99A and H41F confirm that only the metal-binding site at His 99 close to the catalytic triad accounts for the noncompetitive Zn 2+ inhibition type. Additionally, hK7 exhibits large positively charged surface patches, representing putative exosites for prime side substrate recognition.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1997
    In:  Proceedings of the National Academy of Sciences Vol. 94, No. 22 ( 1997-10-28), p. 11845-11850
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 94, No. 22 ( 1997-10-28), p. 11845-11850
    Abstract: Triabin, a 142-residue protein from the saliva of the blood-sucking triatomine bug Triatoma pallidipennis , is a potent and selective thrombin inhibitor. Its stoichiometric complex with bovine α-thrombin was crystallized, and its crystal structure was solved by Patterson search methods and refined at 2.6-Å resolution to an R value of 0.184. The analysis revealed that triabin is a compact one-domain molecule essentially consisting of an eight-stranded β-barrel. The eight strands A to H are arranged in the order A-C-B-D-E-F-G-H, with the first four strands exhibiting a hitherto unobserved up-up-down-down topology. Except for the B-C inversion, the triabin fold exhibits the regular up-and-down topology of lipocalins. In contrast to the typical ligand-binding lipocalins, however, the triabin barrel encloses a hydrophobic core intersected by a unique salt-bridge cluster. Triabin interacts with thrombin exclusively via its fibrinogen-recognition exosite. Surprisingly, most of the interface interactions are hydrophobic. A prominent exception represents thrombin’s Arg-77A side chain, which extends into a hydrophobic triabin pocket forming partially buried salt bridges with Glu-128 and Asp-135 of the inhibitor. The fully accessible active site of thrombin in this complex is in agreement with its retained hydrolytic activity toward small chromogenic substrates. Impairment of thrombin’s fibrinogen converting activity or of its thrombomodulin-mediated protein C activation capacity upon triabin binding is explained by usage of overlapping interaction sites of fibrinogen, thrombomodulin, and triabin on thrombin. These data demonstrate that triabin inhibits thrombin via a novel and unique mechanism that might be of interest in the context of potential therapeutic applications.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1997
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2001
    In:  Proceedings of the National Academy of Sciences Vol. 98, No. 26 ( 2001-12-18), p. 14790-14795
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 98, No. 26 ( 2001-12-18), p. 14790-14795
    Abstract: Caspases form a family of proteinases required for the initiation and execution phases of apoptosis. Distinct proapoptotic stimuli lead to activation of the initiator caspases-8 and -9, which in turn activate the common executioner caspases-3 and -7 by proteolytic cleavage. Whereas crystal structures of several active caspases have been reported, no three-dimensional structure of an uncleaved caspase zymogen is available so far. We have determined the 2.9-Å crystal structure of recombinant human C285A procaspase-7 and have elucidated the activation mechanism of caspases. The overall fold of the homodimeric procaspase-7 resembles that of the active tetrameric caspase-7. Each monomer is organized in two structured subdomains connected by partially flexible linkers, which asymmetrically occupy and block the central cavity, a typical feature of active caspases. This blockage is incompatible with a functional substrate binding site/active site. After proteolytic cleavage within the flexible linkers, the newly formed chain termini leave the cavity and fold outward to form stable structures. These conformational changes are associated with the formation of an intact active-site cleft. Therefore, this mechanism represents a formerly unknown type of proteinase zymogen activation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2001
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 95, No. 7 ( 1998-03-31), p. 3408-3412
    Abstract: Tumor necrosis factor-α (TNFα) is a cytokine that induces protective inflammatory reactions and kills tumor cells but also causes severe damage when produced in excess, as in rheumatoid arthritis and septic shock. Soluble TNFα is released from its membrane-bound precursor by a membrane-anchored proteinase, recently identified as a multidomain metalloproteinase called TNFα-converting enzyme or TACE. We have cocrystallized the catalytic domain of TACE with a hydroxamic acid inhibitor and have solved its 2.0 Å crystal structure. This structure reveals a polypeptide fold and a catalytic zinc environment resembling that of the snake venom metalloproteinases, identifying TACE as a member of the adamalysin/ADAM family. However, a number of large insertion loops generate unique surface features. The pro-TNFα cleavage site fits to the active site of TACE but seems also to be determined by its position relative to the base of the compact trimeric TNFα cone. The active-site cleft of TACE shares properties with the matrix metalloproteinases but exhibits unique features such as a deep S3′ pocket merging with the S1′ specificity pocket below the surface. The structure thus opens a different approach toward the design of specific synthetic TACE inhibitors, which could act as effective therapeutic agents in vivo to modulate TNFα-induced pathophysiological effects, and might also help to control related shedding processes.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1998
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1999
    In:  Proceedings of the National Academy of Sciences Vol. 96, No. 20 ( 1999-09-28), p. 10984-10991
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 96, No. 20 ( 1999-09-28), p. 10984-10991
    Abstract: Tryptases, the predominant serine proteinases of human mast cells, have recently been implicated as mediators in the pathogenesis of allergic and inflammatory conditions, most notably asthma. Their distinguishing features, their activity as a heparin-stabilized tetramer and resistance to most proteinaceous inhibitors, are perfectly explained by the 3-Å crystal structure of human βII-tryptase in complex with 4-amidinophenylpyruvic acid. The tetramer consists of four quasiequivalent monomers arranged in a flat frame-like structure. The active centers are directed toward a central pore whose narrow openings of approximately 40 Å × 15 Å govern the interaction with macromolecular substrates and inhibitors. The tryptase monomer exhibits the overall fold of trypsin-like serine proteinases but differs considerably in the conformation of six surface loops arranged around the active site. These loops border and shape the active site cleft to a large extent and form all contacts with neighboring monomers via two distinct interfaces. The smaller of these interfaces, which is exclusively hydrophobic, can be stabilized by the binding of heparin chains to elongated patches of positively charged residues on adjacent monomers or, alternatively, by high salt concentrations in vitro . On tetramer dissociation, the monomers are likely to undergo transformation into a zymogen-like conformation that is favored and stabilized by intramonomer interactions. The structure thus provides an improved understanding of the unique properties of the biologically active tryptase tetramer in solution and will be an incentive for the rational design of mono- and multifunctional tryptase inhibitors.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1999
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 97, No. 2 ( 2000-01-18), p. 588-592
    Abstract: Calpains (calcium-dependent cytoplasmic cysteine proteinases) are implicated in processes such as cytoskeleton remodeling and signal transduction. The 2.3-Å crystal structure of full-length heterodimeric [80-kDa (dI-dIV) + 30-kDa (dV+dVI)] human m-calpain crystallized in the absence of calcium reveals an oval disc-like shape, with the papain-like catalytic domain dII and the two calmodulin-like domains dIV+dVI occupying opposite poles, and the tumor necrosis factor α-like β-sandwich domain dIII and the N-terminal segments dI+dV located between. Compared with papain, the two subdomains dIIa+dIIb of the catalytic unit are rotated against one another by 50°, disrupting the active site and the substrate binding site, explaining the inactivity of calpains in the absence of calcium. Calcium binding to an extremely negatively charged loop of domain dIII (an electrostatic switch) could release the adjacent barrel-like subdomain dIIb to move toward the helical subdomain dIIa, allowing formation of a functional catalytic center. This switch loop could also mediate membrane binding, thereby explaining calpains' strongly reduced calcium requirements in vivo . The activity status at the catalytic center might be further modulated by calcium binding to the calmodulin domains via the N-terminal linkers.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2000
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2005
    In:  Proceedings of the National Academy of Sciences Vol. 102, No. 46 ( 2005-11-15), p. 16602-16607
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 102, No. 46 ( 2005-11-15), p. 16602-16607
    Abstract: Corn earworm ( Helicoverpa zea ), also called tomato fruitworm, is a common pest of many Solanaceous plants. This insect is known to adapt to the ingestion of plant serine protease inhibitors by using digestive proteases that are insensitive to inhibition. We have now identified a B-type carboxypeptidase of H. zea (CPBHz) insensitive to potato carboxypeptidase inhibitor (PCI) in corn earworm. To elucidate the structural features leading to the adaptation of the insect enzyme, the crystal structure of the recombinant CPBHz protein was determined by x-ray diffraction. CPBHz is a member of the A/B subfamily of metallocarboxypeptidases, which displays the characteristic metallocarboxypeptidase α/β-hydrolase fold, and does not differ essentially from the previously described Helicoverpa armigera CPA, which is very sensitive to PCI. The data provide structural insight into several functional properties of CPBHz. The high selectivity shown by CPBHz for C-terminal lysine residues is due to residue changes in the S1′ substrate specificity pocket that render it unable to accommodate the side chain of an arginine. The insensitivity of CPBHz to plant inhibitors is explained by the exceptional positioning of two of the main regions that stabilize other carboxypeptidase–PCI complexes, the β8-α9 loop, and α7 together with the α7-α8 loop. The rearrangement of these two regions leads to a displacement of the active-site entrance that impairs the proper interaction with PCI. This report explains a crystal structure of an insect protease and its adaptation to defensive plant protease inhibitors.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2005
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2001
    In:  Proceedings of the National Academy of Sciences Vol. 98, No. 24 ( 2001-11-20), p. 13519-13524
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 98, No. 24 ( 2001-11-20), p. 13519-13524
    Abstract: Because invertebrates lack an adaptive immune system, they had to evolve effective intrinsic defense strategies against a variety of microbial pathogens. This ancient form of host defense, the innate immunity, is present in all multicellular organisms including humans. The innate immune system of the Japanese horseshoe crab Tachypleus tridentatus , serving as a model organism, includes a hemolymph coagulation system, which participates both in defense against microbes and in hemostasis. Early work on the evolution of vertebrate fibrinogen suggested a common origin of the arthropod hemolymph coagulation and the vertebrate blood coagulation systems. However, this conjecture could not be verified by comparing the structures of coagulogen, the clotting protein of the horseshoe crab, and of mammalian fibrinogen. Here we report the crystal structure of tachylectin 5A (TL5A), a nonself-recognizing lectin from the hemolymph plasma of T. tridentatus . TL5A shares not only a common fold but also related functional sites with the γ fragment of mammalian fibrinogen. Our observations provide the first structural evidence of a common ancestor for the innate immunity and the blood coagulation systems.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2001
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...