GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Portland Press Ltd.  (2)
  • 1
    In: Bioscience Reports, Portland Press Ltd., Vol. 35, No. 2 ( 2015-04-01)
    Abstract: In MCF-7 breast cancer cells epidermal growth factor (EGF) induces cell proliferation, whereas heregulin (HRG)/neuregulin (NRG) induces irreversible phenotypic changes accompanied by lipid accumulation. Although these changes in breast cancer cells resemble processes that take place in the tissue, there is no understanding of signalling mechanisms regulating it. To identify molecular mechanisms mediating this cell-fate decision process, we applied different perturbations to pathways activated by these growth factors. The results demonstrate that phosphoinositide 3 (PI3) kinase (PI3K) and mammalian target of rapamycin (mTOR) complex (mTORC)1 activation is necessary for lipid accumulation that can also be induced by insulin, whereas stimulation of the extracellular-signal-regulated kinase (ERK) pathway is surprisingly dispensable. Interestingly, insulin exposure, as short as 4 h, was sufficient for triggering the lipid accumulation, whereas much longer treatment with HRG was required for achieving similar cellular response. Further, activation patterns of ATP citrate lyase (ACLY), an enzyme playing a central role in linking glycolytic and lipogenic pathways, suggest that lipids accumulated within cells are produced de novo rather than absorbed from the environment. In the present study, we demonstrate that PI3K pathway regulates phenotypic changes in breast cancer cells, whereas signal intensity and duration is crucial for cell fate decisions and commitment. Our findings reveal that MCF-7 cell fate decisions are controlled by a network of positive and negative regulators of both signalling and metabolic pathways.
    Type of Medium: Online Resource
    ISSN: 0144-8463 , 1573-4935
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2015
    detail.hit.zdb_id: 2014993-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Portland Press Ltd. ; 2023
    In:  Biochemical Journal Vol. 480, No. 14 ( 2023-07-26), p. 1109-1127
    In: Biochemical Journal, Portland Press Ltd., Vol. 480, No. 14 ( 2023-07-26), p. 1109-1127
    Abstract: RhoGAP6 is the most highly expressed GTPase-activating protein (GAP) in platelets specific for RhoA. Structurally RhoGAP6 contains a central catalytic GAP domain surrounded by large, disordered N- and C-termini of unknown function. Sequence analysis revealed three conserved consecutive overlapping di-tryptophan motifs close to the RhoGAP6 C-terminus which were predicted to bind to the mu homology domain (MHD) of δ-COP, a component of the COPI vesicle complex. We confirmed an endogenous interaction between RhoGAP6 and δ-COP in human platelets using GST-CD2AP which binds an N-terminal RhoGAP6 SH3 binding motif. Next, we confirmed that the MHD of δ-COP and the di-tryptophan motifs of RhoGAP6 mediate the interaction between both proteins. Each of the three di-tryptophan motifs appeared necessary for stable δ-COP binding. Proteomic analysis of other potential RhoGAP6 di-tryptophan motif binding partners indicated that the RhoGAP6/δ-COP interaction connects RhoGAP6 to the whole COPI complex. 14-3-3 was also established as a RhoGAP6 binding partner and its binding site was mapped to serine 37. We provide evidence of potential cross-regulation between 14-3-3 and δ-COP binding, however, neither δ-COP nor 14-3-3 binding to RhoGAP6 impacted RhoA activity. Instead, analysis of protein transport through the secretory pathway demonstrated that RhoGAP6/δ-COP binding increased protein transport to the plasma membrane, as did a catalytically inactive mutant of RhoGAP6. Overall, we have identified a novel interaction between RhoGAP6 and δ-COP which is mediated by conserved C-terminal di-tryptophan motifs, and which might control protein transport in platelets.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2023
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...