GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Portland Press Ltd.  (2)
Material
Publisher
  • Portland Press Ltd.  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Portland Press Ltd. ; 2019
    In:  Bioscience Reports Vol. 39, No. 4 ( 2019-04-30)
    In: Bioscience Reports, Portland Press Ltd., Vol. 39, No. 4 ( 2019-04-30)
    Abstract: Background: Mechanical load contributes a lot to the initiation and progression of disc degeneration. Annulus fibrosus (AF) cell biology under mechanical tension remains largely unclear. Objective: The present study was aimed to investigate AF cell senescence under mechanical tension and the potential role of autophagy. Methods: Rat AF cells were cultured and experienced different magnitudes (5% elongation and 20% elongation) of mechanical tension for 12 days. Control AF cells were kept static. Cell proliferation, telomerase activity, cell cycle fraction, and expression of senescence-related molecules (p16 and p53) and matrix macromolecules (aggrecan and collagen I) were analyzed to evaluate cell senescence. In addition, expression of Beclin-1 and LC3, and the ratio of LC3-II to LC3-I were analyzed to investigate cell autophagy. Results: Compared with the control group and 5% tension group, 20% tension group significantly decreased cell proliferation potency and telomerase activity, increased G1/G0 phase fraction, and up-regulated gene/protein expression of p16 and p53, whereas down-regulated gene/protein expression of aggrecan and collagen I. In addition, autophagy-related parameters such as gene/protein expression of Beclin-1 and LC3, and the ratio of LC3-II to LC3-I, were obviously suppressed in the 20% tension group. Conclusion: High mechanical tension promotes AF cell senescence though suppressing cellular autophagy. The present study will help us to better understand AF cell biology under mechanical tension and mechanical load-related disc degeneration.
    Type of Medium: Online Resource
    ISSN: 0144-8463 , 1573-4935
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2019
    detail.hit.zdb_id: 2014993-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Bioscience Reports, Portland Press Ltd., Vol. 39, No. 3 ( 2019-03-29)
    Abstract: Mechanical overload is a risk factor of disc degeneration. It can induce disc degeneration through mediating cell apoptosis. Mechano growth factor (MGF) has been reported to inhibit mechanical overload-induced apoptosis of chondrocytes. The present study is aimed to investigate whether MGF can attenuate mechanical overload-induced nucleus pulposus (NP) cell apoptosis and the possible signaling transduction pathway. Rat NP cells were cultured and subjected to mechanical overload for 7 days. The control NP cells did not experience mechanical load. The exogenous MGF peptide was added into the culture medium to investigate its protective effects. NP cell apoptosis ratio, caspase-3 activity, gene expression of Bcl-2, Bax and caspase-3, protein expression of cleaved caspase-3, cleaved PARP, Bax and Bcl-2 were analyzed to evaluate NP cell apoptosis. In addition, activity of the p38 MAPK pathway was also detected. Compared with the control NP cells, mechanical overload significantly increased NP cell apoptosis and caspase-3 activity, up-regulated gene/protein expression of pro-apoptosis molecules (i.e. Bax, caspase-3, cleaved caspase-3 and cleaved PARP) whereas down-regulated gene/protein expression of anti-apoptosis molecule (i.e. Bcl-2). However, exogenous MGF partly reversed these effects of mechanical overload on NP cell apoptosis. Further results showed that activity of the p38 MAPK pathway of NP cells cultured under mechanical overload was decreased by addition of MGF peptide. In conclusion, MGF is able to attenuate mechanical overload-induced NP cell apoptosis, and the p38 MAPK signaling pathway may be involved in this process. The present study provides that MGF supplementation may be a promising strategy to retard mechanical overload-induced disc degeneration.
    Type of Medium: Online Resource
    ISSN: 0144-8463 , 1573-4935
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2019
    detail.hit.zdb_id: 2014993-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...