GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Portland Press Ltd.  (3)
Material
Publisher
  • Portland Press Ltd.  (3)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Portland Press Ltd. ; 1990
    In:  Biochemical Journal Vol. 265, No. 3 ( 1990-02-01), p. 699-705
    In: Biochemical Journal, Portland Press Ltd., Vol. 265, No. 3 ( 1990-02-01), p. 699-705
    Abstract: D-Xylose isomerases from different bacterial strains were chemically modified with histidine and carboxylate-specific reagents. The active-site residues were identified by amino acid sequence analysis of peptides recognized by differential peptide mapping on ligand-protected and unprotected derivatized enzyme. Both types of modified residues were found to cluster in a region with consensus sequence: Phe-His-Asp-Xaa-Asp-Xaa-Xaa-Pro-Xaa-Gly, conserved in all D-xylose isomerases studied so far. These results are consistent with the recently published X-ray data of the enzyme active centre from Streptomyces rubiginosus showing hydrogen bond formation between Asp-57 and His-54 which locks the latter in one tautomeric form. A study of the pH-dependence of the kinetic parameters suggests the participation of a histidine group in the substrate-binding but not in the isomerization process. Comparison of the N-terminal amino acid sequences of several D-xylose isomerases further revealed a striking homology among the Actinomycetaceae enzymes and identifies them as a specific class of D-xylose isomerases.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 1990
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Biochemical Journal, Portland Press Ltd., Vol. 285, No. 2 ( 1992-07-15), p. 405-411
    Abstract: Purified bovine heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) showed two bands with subunit M(r) of 58,000 and 54,000 when analysed by SDS/PAGE. Both the 58,000- and 54,000-M(r) forms were phosphorylated by cyclic AMP-dependent protein kinase (PKA) and by protein kinase C (PKC) in vitro. Phosphorylation by PKA decreased the apparent Km of PFK-2 for one of its substrates, fructose 6-phosphate, while phosphorylation by PKC did not correlate with any change in PFK-2 activity. The differences between the 58,000- and 54,000-M(r) forms were studied by electroblotting, peptide mapping and microsequencing. Residues 451-510, which correspond to exon 15 in the rat and contain phosphorylation sites for PKA (Ser-466) and PKC (Thr-475), were absent from the 54,000-M(r) form. Peptide mapping after phosphorylation by [gamma-32P]MgATP and PKC showed a phosphorylated peptide containing Thr-475, which was present in the 58,000-M(r) form but not in the 54,000-M(r) form. The fact that the latter form was phosphorylated by PKC and PKA suggests that other phosphorylation sites for PKA and PKC are located outside the region encoded by exon 15. Finally, analysis of RNA from bovine heart showed that the tissue contains two PFK-2/FBPase-2 mRNAs, only one of which was recognized by a probe specific to the region coding for Ser-466 and Thr-475. Taken together, these findings demonstrate that the 58,000- and 54,000-M(r) forms o f bovine heart PFK-2/FBPase-2 result from alternative splicing of the same primary transcript.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 1992
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Portland Press Ltd. ; 1990
    In:  Biochemical Journal Vol. 272, No. 1 ( 1990-11-15), p. 107-112
    In: Biochemical Journal, Portland Press Ltd., Vol. 272, No. 1 ( 1990-11-15), p. 107-112
    Abstract: Inositol 1,4,5-trisphosphate (InsP3) 3-kinase catalyses the phosphorylation of InsP3 to inositol 1,3,4,5-tetrakisphosphate (InsP4). InsP3 3-kinase activity was stimulated by Ca2+ in the presence of calmodulin (CaM) and the protein was associated with two silver-stained bands which migrated with an apparent Mr of approx. 50,000 on SDS/polyacrylamide gels. Upon limited proteolysis with trypsin, the native InsP3 3-kinase was converted into polypeptides of Mr 44,000 and 36,000. Both tryptic fragments displayed InsP3 3-kinase activity that was Ca2+/CaM-sensitive. A cDNA clone, C5, that encodes the C-terminal part of the InsP3 3-kinase, was isolated by immunoscreening of a rat brain cDNA library. The 5′ end of this clone was used in turn to probe the same library, yielding a clone (CP16) containing the entire coding sequence of InsP3 3-kinase. The encoding protein of 459 amino acids (calculated Mr 50,868) has several putative phosphorylation sites for cyclic AMP-dependent protein kinase, protein kinase C and CaM-dependent protein kinase II. When clone C5 was expressed in Escherichia coli, the truncated fusion protein showed Ca2+/CaM-sensitive InsP3 3-kinase activity. Our data demonstrate that the N-terminal part of the protein is not essential for either enzymic or CaM-regulatory properties.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 1990
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...