GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Clinical Science, Portland Press Ltd., Vol. 133, No. 5 ( 2019-03-15), p. 629-643
    Abstract: Aims: The renin–angiotensin system (RAS) plays an important role in the pathophysiology of vascular diseases, especially as a mediator of inflammation and tissue remodelling. Alamandine (Ala1-angiotensin-(1-7)) is a new biologically active peptide from the RAS, interacting with Mas-related G-protein-coupled receptor member D. Although a growing number of studies reveal the cardioprotective effects of alamandine, there is a paucity of data on its participation in vascular remodelling associated events. In the present study, we investigated the effects of alamandine on ascending aorta remodelling after transverse aortic constriction (TAC) in mice. Methods and results: C57BL/6J male mice were divided into the following groups: Sham (sham-operated), TAC (operated) and TAC+ALA (operated and treated with alamandine-HPβCD (2-Hydroxypropyl-β-cyclodextrin), 30 μg/kg/day, by gavage). Oral administration of alamandine for 14 days attenuated arterial remodelling by decreasing ascending aorta media layer thickness and the cells density in the adventitia induced by TAC. Alamandine administration attenuated ascending aorta fibrosis induced by TAC, through a reduction in the following parameters; total collagen deposition, expression collagen III and transforming growth factor-β (TGF-β) transcripts, matrix metalloproteinases (MMPs) activity and vascular expression of MMP-2. Importantly, alamandine decreased vascular expression of proinflammatory genes as CCL2, tumour necrosis factor α (TNF-α) and interleukin-1β (IL-1β), and was able to increase expression of MRC1 and FIZZ1, pro-resolution markers, after TAC surgery. Conclusion: Alamandine treatment attenuates vascular remodelling after TAC, at least in part, through anti-fibrotic and anti-inflammatory effects. Hence, this work opens new avenues for the use of this heptapeptide also as a therapeutic target for vascular disease.
    Type of Medium: Online Resource
    ISSN: 0143-5221 , 1470-8736
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2019
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Science, Portland Press Ltd., Vol. 135, No. 18 ( 2021-09-30), p. 2197-2216
    Abstract: Activation of the angiotensin (Ang)-converting enzyme (ACE) 2/Ang-(1-7)/MAS receptor pathway of the renin–angiotensin system (RAS) induces protective mechanisms in different diseases. Herein, we describe the cardiovascular phenotype of a new transgenic rat line (TG7371) that expresses an Ang-(1-7)-producing fusion protein. The transgene-specific mRNA and the corresponding protein were shown to be present in all evaluated tissues of TG7371 with the highest expression in aorta and brain. Plasma Ang-(1-7) levels, measured by radioimmunoassay (RIA) were similar to control Sprague–Dawley (SD) rats, however high Ang-(1-7) levels were found in the hypothalamus. TG7371 showed lower baseline mean arterial pressure (MAP), assessed in conscious or anesthetized rats by telemetry or short-term recordings, associated with increased plasma atrial natriuretic peptide (ANP) and higher urinary sodium concentration. Moreover, evaluation of regional blood flow and hemodynamic parameters with fluorescent microspheres showed a significant increase in blood flow in different tissues (kidneys, mesentery, muscle, spleen, brown fat, heart and skin), with a resulting decrease in total peripheral resistance (TPR). TG7371 rats, on the other hand, also presented increased cardiac and global sympathetic tone, increased plasma vasopressin (AVP) levels and decreased free water clearance. Altogether, our data show that expression of an Ang-(1-7)-producing fusion protein induced a hypotensive phenotype due to widespread vasodilation and consequent fall in peripheral resistance. This phenotype was associated with an increase in ANP together with an increase in AVP and sympathetic drive, which did not fully compensate the lower blood pressure (BP). Here we present the hemodynamic impact of long-term increase in tissue expression of an Ang-(1-7)-fusion protein and provide a new tool to investigate this peptide in different pathophysiological conditions.
    Type of Medium: Online Resource
    ISSN: 0143-5221 , 1470-8736
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical Science, Portland Press Ltd., Vol. 132, No. 11 ( 2018-06-14), p. 1117-1133
    Abstract: Patients with hyperthyroidism exhibit increased risk of development and progression of cardiac diseases. The activation of the renin–angiotensin system (RAS) has been indirectly implicated in these cardiac effects observed in hyperthyroidism. Angiotensin-(1–7) (Ang-(1–7)) has previously been shown to counterbalance pathological effects of angiotensin II (Ang II). The aim of the present study was to investigate the effects of elevated circulating Ang-(1–7) levels on cardiac effects promoted by hyperthyroidism in a transgenic rat (TG) model that constitutively overexpresses an Ang-(1–7)-producing fusion protein [TGR(A1-7)3292]. TG and wild-type (WT) rats received daily injections (i.p.) of triiodothyronine (T3; 7 µg/100 g of body weight (BW)) or vehicle for 14 days. In contrast with WT rats, the TG rats did not develop cardiac hypertrophy after T3 treatment. Indeed, TG rats displayed reduced systolic blood pressure (SBP) and cardiac hyperdynamic condition induced by hyperthyroidism. Moreover, increased plasma levels of Ang II observed in hyperthyroid WT rats were prevented in TG rats. TG rats were protected from glycogen synthase kinase 3β (GSK3β) inactivation and nuclear factor of activated T cells (NFAT) nuclear accumulation induced by T3. In vitro studies evidenced that Ang-(1–7) prevented cardiomyocyte hypertrophy and GSK3β inactivation induced by T3. Taken together, these data reveal an important cardioprotective action of Ang-(1–7) in experimental model of hyperthyroidism.
    Type of Medium: Online Resource
    ISSN: 0143-5221 , 1470-8736
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2018
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Portland Press Ltd. ; 2020
    In:  Clinical Science Vol. 134, No. 23 ( 2020-12-11), p. 3063-3078
    In: Clinical Science, Portland Press Ltd., Vol. 134, No. 23 ( 2020-12-11), p. 3063-3078
    Abstract: In 2020 we are celebrating the 20th anniversary of the angiotensin-converting enzyme 2 (ACE2) discovery. This event was a landmark that shaped the way that we see the renin–angiotensin system (RAS) today. ACE2 is an important molecular hub that connects the RAS classical arm, formed mainly by the octapeptide angiotensin II (Ang II) and its receptor AT1, with the RAS alternative or protective arm, formed mainly by the heptapeptides Ang-(1-7) and alamandine, and their receptors, Mas and MrgD, respectively. In this work we reviewed classical and modern literature to describe how ACE2 is a critical component of the protective arm, particularly in the context of the cardiac function, coagulation homeostasis and immune system. We also review recent literature to present a critical view of the role of ACE2 and RAS in the SARS-CoV-2 pandemic.
    Type of Medium: Online Resource
    ISSN: 0143-5221 , 1470-8736
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2020
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Science, Portland Press Ltd., Vol. 130, No. 14 ( 2016-07-01), p. 1247-1255
    Abstract: Angiotensin-(1–7) [Ang-(1–7)], a counter-regulatory peptide of the renin–angiotensin system (RAS) exerts its effects through the G-protein-coupled receptor Mas, which is expressed in different tissues, including the brain. Ang-(1–7) has a broad range of effects beyond the well-described cardiovascular and renal actions, including the modulation of emotional and behavioural responses. In the present study we tested the hypothesis that Ang-(1–7) could attenuate the anxiety- and depression-like behaviours observed in transgenic hypertensive (mRen2)27 rats (TGRs). We also hypothesized that Ang-(1–7) could be involved in the a nxiolytic-like effect induced by ACE (angiotensin-converting enzyme) treatment in these hypertensive rats. Therefore, TGRs and Sprague–Dawley rats were subjected to the Elevated Plus Maze (EPM) test, Forced Swimming Test (FST) and Novelty Suppressed Feeding (NSF). TGRs presented a decreased percentage of entries in the open arms of the EPM test, a phenotype reversed by systemic treatment with enalapril or intracerebroventricular infusion of Ang-(1–7). It is interesting that pre-treatment with A779, a selective Mas receptor antagonist, prevented the anxiolytic-like effect induced by the ACE inhibitor. In the NSF test, TGRs showed increased latency to eating, an indicative of a higher aversion in response to a new environment. These animals also showed increased immobility in the FST. Again, Ang-(1–7) reversed this phenotype. Thus, our data showed that Ang-(1–7) can modulate anxiety- and depression-like behaviours in TGRs and warrant further investigation as a new therapy for certain psychiatric disorders.
    Type of Medium: Online Resource
    ISSN: 0143-5221 , 1470-8736
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Clinical Science, Portland Press Ltd., Vol. 135, No. 11 ( 2021-06-11), p. 1353-1367
    Abstract: In spite of the fact that the modulatory effects of angiotensin II (Ang II) on the sympathetic nerve activity to targeted organs involved in blood pressure (BP) regulation is well acknowledged, the local production of this peptide in the brain and the consequences of enhanced central Ang II beyond the cardiovascular system are not yet well comprehended. In the present study, we generated and validated a new transgenic mouse line overexpressing the rat full-length angiotensinogen (Agt) protein specifically in the brain (Agt-Tg). Adult Agt-Tg mice presented overall increased gene expression of total Agt in the brain including brainstem and hypothalamus. In addition, the excess of Agt led to abundantly detectable brain Ang II levels as well as increased circulating copeptin levels. Agt-Tg displayed raised BP in acute recordings, while long-term telemetrically measured basal BP was indistinguishable from wild-types. Agt-Tg has altered peripheral renin–angiotensin system and vasomotor sympathetic tone homeostasis because renal gene expression analysis, plasma Ang II measurements and ganglionic blockade experiments revealed suppressed renin expression and reduced Ang II and higher neurogenic pressure response, respectively. Plasma and urine screens revealed apparently normal fluid and electrolyte handling in Agt-Tg. Interestingly, hematological analyses showed increased hematocrit in Agt-Tg caused by enhanced erythropoiesis, which was reverted by submitting the transgenic mice to a long-term peripheral sympathectomy protocol. Collectively, our findings suggest that Agt-Tg is a valuable tool to study not only brain Ang II formation and its modulatory effects on cardiovascular homeostasis but also its role in erythropoiesis control via autonomic modulation.
    Type of Medium: Online Resource
    ISSN: 0143-5221 , 1470-8736
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...