GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Portland Press Ltd.  (4)
  • Biology  (4)
Material
Publisher
  • Portland Press Ltd.  (4)
Language
Subjects(RVK)
  • Biology  (4)
RVK
  • 1
    In: Biochemical Journal, Portland Press Ltd., Vol. 409, No. 2 ( 2008-01-15), p. 389-398
    Abstract: Polyamines are required for maintenance of intestinal epithelial integrity, and a decrease in cellular polyamines increases the cytoplasmic levels of RNA-binding protein HuR stabilizing p53 and nucleophosmin mRNAs, thus inhibiting IEC (intestinal epithelial cell) proliferation. The AMPK (AMP-activated protein kinase), an enzyme involved in responding to metabolic stress, was recently found to be implicated in regulating the nuclear import of HuR. Here, we provide evidence showing that polyamines modulate subcellular localization of HuR through AMPK-regulated phosphorylation and acetylation of Impα1 (importin α1) in IECs. Decreased levels of cellular polyamines as a result of inhibiting ODC (ornithine decarboxylase) with DFMO (D,L-α-difluoromethylornithine) repressed AMPK activity and reduced Impα1 levels, whereas increased levels of polyamines as a result of ODC overexpression induced both AMPK and Impα1 levels. AMPK activation by overexpression of the AMPK gene increased Impα1 but reduced the cytoplasmic levels of HuR in control and polyamine-deficient cells. IECs overexpressing wild-type Impα1 exhibited a decrease in cytoplasmic HuR abundance, while cells overexpressing Impα1 proteins bearing K22R (lacking acetylation site), S105A (lacking phosphorylation site) or K22R/S105A (lacking both sites) mutations displayed increased levels of cytoplasmic HuR. Ectopic expression of these Impα1 mutants also prevented the increased levels of cytoplasmic HuR following polyamine depletion. These results indicate that polyamine-mediated AMPK activation triggers HuR nuclear import through phosphorylation and acetylation of Impα1 in IECs and that polyamine depletion increases cytoplasmic levels of HuR as a result of inactivation of the AMPK-driven Impα1 pathway.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2008
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Portland Press Ltd. ; 2014
    In:  Biochemical Journal Vol. 459, No. 2 ( 2014-04-15), p. 405-415
    In: Biochemical Journal, Portland Press Ltd., Vol. 459, No. 2 ( 2014-04-15), p. 405-415
    Abstract: Neurodevelopment is orchestrated by a series of growth factor–HS (heparan sulfate) interactions which are involved in neuritogenesis. GLCE (glucuronic acid epimerase) is a critical enzyme involved in HS synthesis, which converts GlcA (D-glucuronic acid) into IdoA (L-iduronic acid). However, the function of GLCE in neuritogenesis is largely unknown. In the present study we showed that GLCE depletion caused arrested PC12 cell growth and promoted the cell neuritogenesis and differentiation induced by NGF (nerve growth factor). PC12 cell growth was boosted by overexpression of GLCE, and neuritogenesis was impaired when GLCE depletion was rescued. Interestingly, overexpression of wild-type GLCE with Y168A and Y222A mutations led to enhanced PC12 cell growth and attenuated the neuritogenesis triggered by GLCE silencing. We showed further that GLCE depletion blocked SMAD1/5/8 phosphorylation; however, this signalling could be restored by GLCE or the mutation of its active enzymatic site. In addition, the downstream effector of SMAD1/5/8, ID3 (inhibitor of DNA binding/differentiation 3) was induced by GLCE. ID3 silencing inhibited PC12 cell growth and induced cell neuritogenesis and differentiation. In addition, ectopic expression of ID3 partially rescued the phenotype caused by GLCE silencing. The results of the present study suggest that GLCE plays a key role in PC12 cell growth and neuritogenesis through SMAD/ID3 signalling.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2014
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Biochemical Journal, Portland Press Ltd., Vol. 475, No. 6 ( 2018-03-30), p. 1107-1119
    Abstract: In plants and microorganisms, aspartate kinase (AK) catalyzes an initial commitment step of the aspartate family amino acid biosynthesis. Owing to various structural organizations, AKs from different species show tremendous diversity and complex allosteric controls. We report the crystal structure of AK from Pseudomonas aeruginosa (PaAK), a typical α2β2 hetero-tetrameric enzyme, in complex with inhibitory effectors. Distinctive features of PaAK are revealed by structural and biochemical analyses. Essentially, the open conformation of Lys-/Thr-bound PaAK structure clarifies the inhibitory mechanism of α2β2-type AK. Moreover, the various inhibitory effectors of PaAK have been identified and a general amino acid effector motif of AK family is described.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2018
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Biochemical Journal, Portland Press Ltd., Vol. 477, No. 13 ( 2020-07-17), p. 2581-2594
    Abstract: Glucagon is a peptide hormone secreted by islet α cells. It plays crucial roles in glucose homeostasis and metabolism by activating its cognate glucagon receptor (GCGR). A naturally occurring deleterious mutation V368M in the human GCGR leads to reduced ligand binding and down-regulation of glucagon signaling. To examine the association between this mutation and metabolic disorders, a knock-in mouse model bearing homozygous V369M substitution (equivalent to human V368M) in GCGR was made using CRISPR-Cas9 technology. These GcgrV369M+/+ mice displayed lower fasting blood glucose levels with improved glucose tolerance compared with wild-type controls. They also exhibited hyperglucagonemia, pancreas enlargement and α cell hyperplasia with a lean phenotype. Additionally, V369M mutation resulted in a reduction in adiposity with normal body weight and food intake. Our findings suggest a key role of V369M/V368M mutation in GCGR-mediated glucose homeostasis and pancreatic functions, thereby pointing to a possible interplay between GCGR defect and metabolic disorders.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2020
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...