GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PERGAMON-ELSEVIER SCIENCE LTD  (1)
  • T H E I N T E R N AT I O N A L M E T E O ROLO G I C A L I N S T I T U T E I N S TOCKHOLM  (1)
Document type
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    T H E I N T E R N AT I O N A L M E T E O ROLO G I C A L I N S T I T U T E I N S TOCKHOLM
    In:  EPIC3Tellus B, T H E I N T E R N AT I O N A L M E T E O ROLO G I C A L I N S T I T U T E I N S TOCKHOLM, 63b, pp. 823-830, ISSN: 0280-6509
    Publication Date: 2019-07-17
    Description: Although salt rejection from sea ice is a key process in deep-water formation in ice-covered seas, the concurrent rejection of CO2 and the subsequent effect on air–sea CO2 exchange have received little attention. We review the mechanisms by which sea ice directly and indirectly controls the air–sea CO2 exchange and use recent measurements of inorganic carbon compounds in bulk sea ice to estimate that oceanic CO2 uptake during the seasonal cycle of sea-ice growth and decay in ice-covered oceanic regions equals almost half of the net atmospheric CO2 uptake in ice-free polar seas. This sea-ice driven CO2 uptake has not been considered so far in estimates of global oceanic CO2 uptake. Net CO2 uptake in sea-ice–covered oceans can be driven by; (1) rejection during sea–ice formation and sinking of CO2-rich brine into intermediate and abyssal oceanic water masses, (2) blocking of air–sea CO2 exchange during winter, and (3) release of CO2-depleted melt water with excess total alkalinity during sea-ice decay and (4) biological CO2 drawdown during primary production in sea ice and surface oceanic waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Progress In Oceanography, PERGAMON-ELSEVIER SCIENCE LTD, 141, pp. 153-167, ISSN: 0079-6611
    Publication Date: 2016-06-07
    Description: Previous observations have shown that the partial pressure of carbon dioxide (pCO2) in sea ice brines is generally higher in Arctic sea ice compared to those from the Antarctic sea ice, especially in winter and early spring. We hypothesized that these differences result from the higher dissolved organic carbon (DOC) content in Arctic seawater: Higher concentrations of DOC in seawater would be reflected in a greater DOC incorporation into sea ice, enhancing bacterial respiration, which in turn would increase the pCO2 in the ice. To verify this hypothesis, we performed an experiment using two series of mesocosms: one was filled with seawater (SW) and the other one with seawater with an addition of filtered humic-rich river water (SWR). The addition of river water increased the DOC concentration of the water from a median of 142 µmol Lwater-1 in SW to 249 µmol Lwater-1 in SWR. Sea ice was grown in these mesocosms under the same physical conditions over 19 days. Microalgae and protists were absent, and only bacterial activity has been detected. We measured the DOC concentration, bacterial respiration, total alkalinity and pCO2 in sea ice and the underlying seawater, and we calculated the changes in dissolved inorganic carbon (DIC) in both media. We found that bacterial respiration in ice was higher in SWR: median bacterial respiration was 25 nmol C Lice-1 h-1 compared to 10 nmol C Lice-1 h-1 in SW. pCO2 in ice was also higher in SWR with a median of 430 ppm compared to 356 ppm in SW. However, the differences in pCO2 were larger within the ice interiors than at the surfaces or the bottom layers of the ice, where exchanges at the air–ice and ice–water interfaces might have reduced the differences. In addition, we used a model to simulate the differences of pCO2 and DIC based on bacterial respiration. The model simulations support the experimental findings and further suggest that bacterial growth efficiency in the ice might approach 0.15 and 0.2. It is thus credible that the higher pCO2 in Arctic sea ice brines compared with those from the Antarctic sea ice were due to an elevated bacterial respiration, sustained by higher riverine DOC loads. These conclusions should hold for locations and time frames when bacterial activity is relatively dominant compared to algal activity, considering our experimental conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...