GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (8)
Document type
Keywords
Years
  • 1
    Publication Date: 2023-05-12
    Keywords: Europe, Norway; Mass spectrometer Europa Scientific 20/2; MESO; Mesocosm experiment; ORDINAL NUMBER; Raunefjord; δ13C, particulate organic carbon
    Type: Dataset
    Format: text/tab-separated-values, 189 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-05-12
    Keywords: Europe, Norway; Mass spectrometer Europa Scientific 20/2; MESO; Mesocosm experiment; ORDINAL NUMBER; Raunefjord; δ13C, carbon dioxide, aquatic
    Type: Dataset
    Format: text/tab-separated-values, 198 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-05-12
    Keywords: Europe, Norway; Mass spectrometer Europa Scientific 20/2; MESO; Mesocosm experiment; ORDINAL NUMBER; Raunefjord; δ13C, dissolved inorganic carbon
    Type: Dataset
    Format: text/tab-separated-values, 91 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-05-12
    Keywords: Alkenone per cell Emiliania huxleyi; Europe, Norway; MESO; Mesocosm experiment; ORDINAL NUMBER; Pressurized liquid extraction; Raunefjord
    Type: Dataset
    Format: text/tab-separated-values, 33 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Benthien, Albert; Zondervan, Ingrid; Engel, Anja; Hefter, Jens; Terbrüggen, Anja; Riebesell, Ulf (2007): Carbon isotopic fractionation during a mesocosm bloom experiment dominated by Emiliania huxleyi: Effects of CO2 concentration and primary production. Geochimica et Cosmochimica Acta, 71(6), 1528-1541, https://doi.org/10.1016/j.gca.2006.12.015
    Publication Date: 2023-05-12
    Description: We investigated the effect of CO2 and primary production on the carbon isotopic fractionation of alkenones and particulate organic matter (POC) during a natural phytoplankton bloom dominated by the coccolithophore Emiliania huxleyi. In nine semi-closed mesocosms (~11 m**3 each), three different CO2 partial pressures (pCO2) in triplicate represented glacial (~180 ppmv CO2), present (380 ppmv CO2), and year 2100 (~710 ppmv CO2) CO2 conditions. The largest shift in alkenone isotopic composition (4-5 per mil) occurred during the exponential growth phase, regardless of the CO2 concentration in the respective treatment. Despite the difference of ~500 ppmv, the influence of pCO2 on isotopic fractionation was marginal (1-2 per mil). During the stationary phase, E. huxleyi continued to produce alkenones, accumulating cellular concentrations almost four times higher than those of exponentially dividing cells. Our isotope data indicate that, while alkenone production was maintained, the interaction of carbon source and cellular uptake dynamics by E. huxleyi reached a steady state. During stationary phase, we further observed a remarkable increase in the difference between d13C of bulk organic matter and of alkenones spanning 7-12 per mil. We suggest that this phenomenon is caused mainly by a combination of extracellular release of 13C-enriched polysaccharides and subsequent particle aggregation induced by the production of transparent exopolymer particles (TEP).
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Riebesell, Ulf; Zondervan, Ingrid; Rost, Björn; Tortell, Philippe Daniel; Zeebe, Richard E; Morel, Francois M M (2000): Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407, 364-367, https://doi.org/10.1038/35030078
    Publication Date: 2024-05-27
    Description: The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange. The present rise in atmospheric CO2 levels causes significant changes in surface ocean pH and carbonate chemistry. Such changes have been shown to slow down calcification in corals and coralline macroalgae, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica . This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.
    Keywords: Alkalinity, Gran titration (Gran, 1950); Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calculated; Calculated, see reference(s); Calculated after Freeman & Hayes (1992); Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, particulate, per cell; Carbon, inorganic, particulate, production per cell; Carbon, organic, particulate, per cell; Carbon, organic, particulate, production per cell; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, total; Carbon organic/inorganic ratio; Chromista; Colorimetry; Entire community; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, carbon-specific, per cell; Haptophyta; Identification; Isotopic fractionation, during photosynthis; Laboratory experiment; Laboratory strains; Light; Light:Dark cycle; Mass spectrometer ANCA-SL 20-20 Europa Scientific; Mass spectrometer Finnigan MAT 252; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH meter, WTW, pH 3000; Phytoplankton; Primary production/Photosynthesis; Radiation, photosynthetically active; RRZZ_00-02; Salinity; Single species; Temperate; Temperature, water; UIC 5012 coulometer; δ13C, carbon dioxide, atmospheric; δ13C, dissolved inorganic carbon; δ13C, particulate inorganic carbon; δ13C, particulate organic carbon
    Type: Dataset
    Format: text/tab-separated-values, 1190 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Riebesell, Ulf; Zondervan, Ingrid; Rost, Björn; Tortell, Philippe Daniel; Zeebe, Richard E; Morel, Francois M M (2000): Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407, 364-367, https://doi.org/10.1038/35030078
    Publication Date: 2024-05-27
    Description: The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments1. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange2. The present rise in atmospheric CO2 levels3 causes significant changes in surface ocean pH and carbonate chemistry4. Such changes have been shown to slow down calcification in corals and coralline macroalgae5,6, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica . This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.
    Keywords: Alkalinity, potentiometric; Alkalinity, total; Aphrodite aculeata; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calculated, see reference(s); Calculated after Freeman & Hayes (1992); Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, particulate, production per cell; Carbon, organic, particulate, production per cell; Carbon, total, particulate; Carbon, total, particulate, production per cell; Carbon/Nitrogen ratio; Carbonate ion; Carbon dioxide, dissolved; Carbon dioxide, total; Chromista; Coccolithophoridae, total; Counting; CTD, Sea-Bird SBE 911plus; Entire community; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Growth/Morphology; Haptophyta; Isotopic fractionation, during photosynthis; Laboratory experiment; Laboratory strains; Light; Mass spectrometer Finnigan Delta-S; Measured; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phytoplankton; Phytoplankton cell division rate; Primary production/Photosynthesis; Radiation, photosynthetically active; Riebesell_etal_2000a; Sample ID; Scanning electron microscope (SEM); Single species; Temperate; Temperature, water; δ13C, carbon dioxide, aquatic; δ13C, dissolved inorganic carbon; δ13C, particulate inorganic carbon; δ13C, particulate organic carbon; δ13C, total particulate carbon
    Type: Dataset
    Format: text/tab-separated-values, 3006 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Burkhardt, Steffen; Riebesell, Ulf; Zondervan, Ingrid (1999): Stable carbon isotope fractionation by marine phytoplankton in response to daylength, growth rate, and CO2 availability. Marine Ecology Progress Series, 194, 31-41, https://doi.org/10.3354/meps184031
    Publication Date: 2024-05-22
    Description: Stable carbon isotope fractionation (%) of 7 marine phytoplankton species grown in different irradiance cycles was measured under nutrient-replete conditions at a high light intensity in batch cultures. Compared to experiments under continuous light, all species exhibited a significantly higher instantaneous growth rate (pi), defined as the rate of carbon fixation during the photo period, when cultivated at 12:12 h. 16:8 h, or 186 h light:dark (L/D) cycles. Isotopic fractionation by the diatoms Skeletonema costatum, Asterionella glacialis, Thalassiosira punctigera, and Coscinodiscus wailesii (Group I) was 4 to 6% lower in a 16:8 h L/D cycle than under continuous light, which we attribute to differences in pi. In contrast, E, in Phaeodactylum tn'cornutum, Thalassiosira weissflogii, and in the dinoflagellate Scrippsiella trochoidea (Group 11) was largely insensitive to day length-related differences in instantaneous growth rate. Since other studies have reported growth-rate dependent fractionation under N-limited conditions in P. tricornutum, pi-related effects on fractionation apparently depend on the factor controlling growth rate. We suggest that a general relationship between E, and pi/[C02,,,] may not exist. For 1 species of each group we tested the effect of variable CO2 concentration, [COz,,,], on isotopic fractionation. A decrease in [CO2,,,] from ca 26 to 3 pm01 kg-' caused a decrease in E, by less than 3%0 This indicates that variation in h in response to changes in day length has a similar or even greater effect on isotopic fractionation than [COz,,,] m some of the species tested. In both groups E, tended to be higher in smaller species at comparable growth rates. In 24 and 48 h time series the algal cells became progressively enriched in 13C during the day and the first hours of the dark period, followed by l3C depletion in the 2 h before beginning of the following Light period. The daily amplitude of the algal isotopic composition (613C), however, was 〈1.5%0, which demonstrates that diurnal variation in Fl3C is relatively small.
    Keywords: Alkalinity, Gran titration (Gran, 1950); Alkalinity, total; Aragonite saturation state; Asterionella glacialis; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Burkhardt_etal_99; Calcite saturation state; Calculated; Calculated after Freeman & Hayes (1992); Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Coulometric titration; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Isotopic fractionation, during photosynthis; Laboratory experiment; Laboratory strains; Light; Light:Dark cycle; Mass spectrometer ANCA-SL 20-20 Europa Scientific; Mass spectrometer Finnigan Delta-S; Measured; Myzozoa; Nitrate; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phaedactylum tricornutum; Phosphate; Phytoplankton; Radiation, photosynthetically active; Salinity; Scrippsiella trochoidea; Silicate; Single species; Skeletonema costatum; Species; Temperature, water; Thalassiosira punctigera; Thalassiosira weissflogii; δ13C, carbon dioxide, aquatic; δ13C, particulate organic carbon
    Type: Dataset
    Format: text/tab-separated-values, 480 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...