GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (19)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Dineshram, R; Thiyagarajan, Vengatesen; Lane, Ackley Charles; Yu, Ziniu; Shu, Xiao; Leung, Priscilla TY (2013): Elevated CO2 alters larval proteome and its phosphorylation status in the commercial oyster, Crassostrea hongkongensis. Marine Biology, 160(8), 2189-2205, https://doi.org/10.1007/s00227-013-2176-x
    Publication Date: 2024-03-15
    Description: Ocean acidification (OA) is beginning to have noticeable negative impact on calcification rate, shell structure and physiological energy budgeting of several marine organisms; these alter the growth of many economically important shellfish including oysters. Early life stages of oysters may be particularly vulnerable to OA-driven low pH conditions because their shell is made up of the highly soluble form of calcium carbonate (CaCO3) mineral, aragonite. Our long-term CO2 perturbation experiment showed that larval shell growth rate of the oyster species Crassostrea hongkongensis was significantly reduced at pH 〈 7.9 compared to the control (8.2). To gain new insights into the underlying mechanisms of low-pH-induced delays in larval growth, we have examined the effect of pH on the protein expression pattern, including protein phosphorylation status at the pediveliger larval stage. Using two-dimensional electrophoresis and mass spectrometry, we demonstrated that the larval proteome was significantly altered by the two low pH treatments (7.9 and 7.6) compared to the control pH (8.2). Generally, the number of expressed proteins and their phosphorylation level decreased with low pH. Proteins involved in larval energy metabolism and calcification appeared to be down-regulated in response to low pH, whereas cell motility and production of cytoskeletal proteins were increased. This study on larval growth coupled with proteome change is the first step toward the search for novel Protein Expression Signatures indicative of low pH, which may help in understanding the mechanisms involved in low pH tolerance.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Crassostrea hongkongensis; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression (incl. proteomics); Growth/Morphology; Growth rate; Growth rate, standard deviation; Incubation duration; Laboratory experiment; Mollusca; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Potentiometric; Potentiometric titration; Protein name; Protein spots, total; Protein spots, total, standard deviation; Replicates; Salinity; Shell length; Single species; Species; Spot intensity, relative; Spot intensity, relative, standard deviation; Temperature, water; Treatment; Tropical; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 6308 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Dineshram, R; Chandramouli, K; Ko, W K Ginger; Zhang, Huoming; Qian, Pei Yuan; Ravasi, Timothy; Thiyagarajan, Vengatesen (2016): Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors. Global Change Biology, 22(6), 2054-2068, https://doi.org/10.1111/gcb.13249
    Publication Date: 2024-03-15
    Description: The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life-history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change-related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ-LC-MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down-regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down-regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up-regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs.
    Keywords: Accession number; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Crassostrea gigas; EXP; Experiment; Fold change; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression (incl. proteomics); Identification; Individuals; Jiaozhou_Bay; Laboratory experiment; Mollusca; Mortality/Survival; North Pacific; Number of expressed proteins; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Proteins; Registration number of species; Salinity; Salinity, standard deviation; Single species; Species; Survival; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 269779 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: Biomineralization is one of the key processes that is notably affected in marine calcifiers such as oysters under ocean acidification (OA). Understanding molecular changes in the biomineralization process under OA and its heritability, therefore, is key to developing conservation strategies for protecting ecologically and economically important oyster species. To do this, in this study, we have explicitly chosen the tissue involved in biomineralization (mantle) of an estuarine commercial oyster species, Crassostrea hongkongensis. The primary aim of this study is to understand the influence of DNA methylation over gene expression of mantle tissue under decreased pH 7.4, a proxy of OA, and to extrapolate if these molecular changes can be observed in the product of biomineralization—the shell. We grew early juvenile C. hongkongensis, under decreased pH 7.4 and control pH 8.0 over 4.5 months and studied OA-induced DNA methylation and gene expression patterns along with shell properties such as microstructure, crystal orientation and hardness. The population of oysters used in this study was found to be moderately resilient to OA at the end of the experiment. The expression of key biomineralization-related genes such as carbonic anhydrase and alkaline phosphatase remained unaffected; thus, the mechanical properties of the shell (shell growth rate, hardness and crystal orientation) were also maintained without any significant difference between control and OA conditions with signs of severe dissolution. In addition, this study makes three major conclusions: (1) higher expression of Ca2+ binding/signalling-related genes in the mantle plays a key role in maintaining biomineralization under OA; (2) DNA methylation changes occur in response to OA; however, these methylation changes do not directly control gene expression; and (3) OA would be more of a 'dissolution problem' rather than a 'biomineralization problem' for resilient species that maintain calcification rate with normal shell growth and mechanical properties.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Crassostrea hongkongensis; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Mollusca; Month; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Salinity; Salinity, standard deviation; Single species; Species; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type; Uniform resource locator/link to reference; Vickers Hardness; Vickers Hardness, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 270 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ko, W K Ginger; Dineshram, R; Campanati, Camilla; Chan, B S Vera; Havenhand, Jonathan N; Thiyagarajan, Vengatesen (2014): Interactive Effects of Ocean Acidification, Elevated Temperature, and Reduced Salinity on Early-Life Stages of the Pacific Oyster. Environmental Science & Technology, 48(17), 10079-10088, https://doi.org/10.1021/es501611u
    Publication Date: 2024-03-15
    Description: Ocean acidification (OA) effects on larvae are partially attributed for the rapidly declining oyster production in the Pacific Northwest region of the United States. This OA effect is a serious concern in SE Asia, which produces 〉80% of the world's oysters. Because climate-related stressors rarely act alone, we need to consider OA effects on oysters in combination with warming and reduced salinity. Here, the interactive effects of these three climate-related stressors on the larval growth of the Pacific oyster, Crassostrea gigas, were examined. Larvae were cultured in combinations of temperature (24 and 30 °C), pH (8.1 and 7.4), and salinity (15 psu and 25 psu) for 58 days to the early juvenile stage. Decreased pH (pH 7.4), elevated temperature (30 °C), and reduced salinity (15 psu) significantly delayed pre- and post-settlement growth. Elevated temperature lowered the larval lipid index, a proxy for physiological quality, and negated the negative effects of decreased pH on attachment and metamorphosis only in a salinity of 25 psu. The negative effects of multiple stressors on larval metamorphosis were not due to reduced size or depleted lipid reserves at the time of metamorphosis. Our results supported the hypothesis that the C. gigas larvae are vulnerable to the interactions of OA with reduced salinity and warming in Yellow Sea coastal waters now and in the future.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Crassostrea gigas; Development; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Laboratory experiment; Larvae; Lipid index; Mollusca; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Replicate; Salinity; Settlement; Single species; Species; Temperate; Temperature; Temperature, water; Treatment; Tsingdao; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1563 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Chan, B S Vera; Thiyagarajan, Vengatesen; Lu, Xingwen; Zhang, Tong; Shih, Kaimin (2013): Temperature Dependent Effects of Elevated CO2 on Shell Composition and Mechanical Properties of Hydroides elegans: Insights from a Multiple Stressor Experiment. PLoS ONE, 8(11), e78945, https://doi.org/10.1371/journal.pone.0078945
    Publication Date: 2024-03-15
    Description: The majority of marine benthic invertebrates protect themselves from predators by producing calcareous tubes or shells that have remarkable mechanical strength. An elevation of CO2 or a decrease in pH in the environment can reduce intracellular pH at the site of calcification and thus interfere with animal's ability to accrete CaCO3. In nature, decreased pH in combination with stressors associated with climate change may result in the animal producing severely damaged and mechanically weak tubes. This study investigated how the interaction of environmental drivers affects production of calcareous tubes by the serpulid tubeworm, Hydroides elegans. In a factorial manipulative experiment, we analyzed the effects of pH (8.1 and 7.8), salinity (34 and 27), and temperature (23°C and 29°C) on the biomineral composition, ultrastructure and mechanical properties of the tubes. At an elevated temperature of 29°C, the tube calcite/aragonite ratio and Mg/Ca ratio were both increased, the Sr/Ca ratio was decreased, and the amorphous CaCO3 content was reduced. Notably, at elevated temperature with decreased pH and reduced salinity, the constructed tubes had a more compact ultrastructure with enhanced hardness and elasticity compared to decreased pH at ambient temperature. Thus, elevated temperature rescued the decreased pH-induced tube impairments. This indicates that tubeworms are likely to thrive in early subtropical summer climate. In the context of climate change, tubeworms could be resilient to the projected near-future decreased pH or salinity as long as surface seawater temperature rise at least by 4°C.
    Keywords: Alkalinity, total; Animalia; Annelida; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite/Aragonite ratio; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Elasticity; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Hardness; Hong_Kong; Hydroides elegans; Laboratory experiment; Magnesium/Calcium ratio; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric; Potentiometric titration; Ratio; Salinity; Single species; Species; Strontium/Calcium ratio; Temperature; Temperature, water; Treatment; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 748 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Campanati, Camilla; Yip, Stella; Lane, Ackley Charles; Thiyagarajan, Vengatesen (2016): Combined effects of low pH and low oxygen on the early-life stages of the barnacle Balanus amphitrite. ICES Journal of Marine Science, 73(3), 791-802, https://doi.org/10.1093/icesjms/fsv221
    Publication Date: 2024-03-15
    Description: Ocean acidification (OA) is anticipated to interact with the more frequently occurring hypoxic conditions in shallow coastal environments. These could exert extreme stress on the barnacle-dominated fouling communities. However, the interactive effect of these two emerging stressors on early-life stages of fouling organisms remains poorly studied. We investigated both the independent and interactive effect of low pH (7.6 vs. ambient 8.2) and low oxygen (LO; 3 mg/l vs. ambient 5 mg/l) from larval development through settlement (attachment and metamorphosis) and juvenile growth of the widespread fouling barnacle, Balanus amphitrite. In particular, we focused on the critical transition between planktonic and benthic phases to examine potential limiting factors (i.e. larval energy storage and the ability to perceive cues) that may restrain barnacle recruitment under the interactive stressors. LO significantly slowed naupliar development, while the interaction with low pH (LO-LP) seemed to alleviate the negative effect. However, 20-50% of the larvae became cyprid within 4 d post-hatching, regardless of treatment. Under the two stressors interaction (LO-LP), the barnacle larvae increased their feeding rate, which may explain why their energy reserves at competency were not different from any other treatment. In the absence of a settlement-inducing cue, a significantly lower percentage of cyprids (15% lower) settled in LO and LO-LP. The presence of an inducing cue, however, elevated attachment up to 50-70% equally across all treatments. Post-metamorphic growth was not altered, although the condition index was different between LO and LO-LP treatments, potentially indicating that less and/or weaker calcified structures were developed when the two stressors were experienced simultaneously. LO was the major driver for the responses observed and its interaction with low pH should be considered in future studies to avoid underestimating the sensitivity of biofouling species to OA and associated climate change stressors.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Arthropoda; Balanus amphitriterite; Bicarbonate ion; Biomass, ash free dry mass per individual; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Clearance rate, standard deviation; Clearance rate per individual; Coast and continental shelf; Condition index; Development; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Identification; Laboratory experiment; Lipids per individual; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen; Pak_sha_wan; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; Percentage; Percentage, standard deviation; Percentage, standard error; pH; Potentiometric; Potentiometric titration; Registration number of species; Reproduction; Salinity; Settlement; Single species; Species; Stage; Temperature, water; Time in days; Treatment; Tropical; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 5577 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-15
    Description: The carbon dioxide induced ocean acidification (OA) process is well known to have profound effects on physiology, survival and immune responses in marine organisms, and particularly calcifiers including edible oysters. At the same time, some wild populations could develop a complex and sophisticated immune system to cope with multiple biotic and abiotic stresses, such as bacterial infections and OA, over the long period of coevolution with the environment. However, it is unclear how immunological responses and the underlying mechanisms are altered under the combined effect of OA and bacterial infection, especially in the ecologically and economically important edible oysters. Here, we collected the wild population of oyster species Crassostrea hongkongensis (the Hong Kong oyster) from their native estuarine area and carried out a bacterial challenge with the worldwide pervasive pathogen of human foodborne disease, Vibrio parahaemolyticus, to investigate the host immune responses and molecular mechanisms under the high-CO2 and low pH-driven OA conditions. The wild population had a high immune resistance to OA, but the resistance is compromised under the combined effect of OA and bacterial infection both in vivo or in vitro. We classified all transcriptomic genes based on expression profiles and functional pathways and identified the specifically switched on and off genes and pathways under combined effect. These genes and pathways were mainly involved in multiple immunological processes including pathogen recognition, immune signal transduction and effectors. This work would help understand how the immunological function and mechanism response to bacterial infection in wild populations and predict the dynamic distribution of human health-related pathogens to reduce the risk of foodborne disease under the future climate change scenario.
    Keywords: Alkalinity, total; Animalia; Apoptosis cells; Aragonite saturation state; Bacteria clearance in hemocytes; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Crassostrea hongkongensis; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Hand picking; Hong Kong, Region of the People's Republic of China; Immunology/Self-protection; Laboratory experiment; Mollusca; Mortality/Survival; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other; Pak_Nai_Field; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric; Potentiometric titration; Replicate; Salinity; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Survival; Temperature, water; Time in hours; Treatment; Tropical; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 3150 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Dineshram, R; Wong, Kevin K W; Shu, Xiao; Yu, Ziniu; Qian, Pei Yuan; Thiyagarajan, Vengatesen (2012): Analysis of Pacific oyster larval proteome and its response to high-CO2. Marine Pollution Bulletin, 64(10), 2160-2167, https://doi.org/10.1016/j.marpolbul.2012.07.043
    Publication Date: 2024-03-15
    Description: Most calcifying organisms show depressed metabolic, growth and calcification rates as symptoms to high-CO(2) due to ocean acidification (OA) process. Analysis of the global expression pattern of proteins (proteome analysis) represents a powerful tool to examine these physiological symptoms at molecular level, but its applications are inadequate. To address this knowledge gap, 2-DE coupled with mass spectrophotometer was used to compare the global protein expression pattern of oyster larvae exposed to ambient and to high-CO(2). Exposure to OA resulted in marked reduction of global protein expression with a decrease or loss of 71 proteins (18% of the expressed proteins in control), indicating a wide-spread depression of metabolic genes expression in larvae reared under OA. This is, to our knowledge, the first proteome analysis that provides insights into the link between physiological suppression and protein down-regulation under OA in oyster larvae.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Crassostrea gigas; Duration, number of days; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression (incl. proteomics); Growth/Morphology; Identification; Laboratory experiment; Mollusca; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Protein name; Replicate; Salinity; Shell length; Single species; Species; Spot intensity, relative; Temperature, water; Treatment; Tropical; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1861 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-15
    Description: Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression “on or off” as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Behaviour; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Crassostrea hongkongensis; Frequency; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Mollusca; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Replicate; Reproduction; Salinity; Salinity, standard deviation; Settlement; Shell length; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Time in days; Treatment; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1432 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-15
    Description: The majority of common edible oysters are projected to grow more slowly and have smaller impaired shells because of anthropogenic CO2-induced reductions in seawater carbonate ion concentration and pH, a process called ocean acidification (OA). Recent evidence has shown that OA has carryover effects, for example, larvae exposed to OA will also exhibit either positive or negative effects after metamorphosis. This study examined the hidden carryover effects of OA exposure during parental and larval stages on post-metamorphic traits of the commercially important oyster species Crassostrea hongkongensis. Adults of C. hongkongensis were exposed to control pH (pHNBS 8.0) and OA-induced low pH (pHNBS 7.4) conditions. Their larval offspring were then exposed to the same aquarium conditions before being out-planted as post-metamorphic juveniles at a mariculture site for 10 months. Initially, larval offspring were resilient to low pH with or without parental exposure. The larvae exposed to low pH had significantly faster development and higher percentage of settlement success compared to control groups. The out-planted juveniles with parental exposure had improved survival and growth compared to juveniles without parental exposure, regardless of the larval exposure history. This implies that transgenerational effects due to parental exposure not only persists but also have a greater influence than the within-generational effects of larval exposure. Our results shed light on the importance of linking the various life history stages when assessing the OA-induced carryover capacity of C. hongkongensis in the natural environment. Understanding these linked relationships helps us better predict the species rapid adaptation responses in the face of changing coastal conditions due to OA.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Comment; Crassostrea hongkongensis; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth; Growth/Morphology; Growth rate; Identification; Laboratory experiment; Mollusca; Mortality/Survival; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Replicates; Reproduction; Salinity; Salinity, standard deviation; Settlement; Single species; Species; Survival; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type; Uniform resource locator/link to reference; Wet mass; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 18126 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...