GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Body length; Family; Identification; Replicate; Sample code/label; Species; Threshold cycle, quantitative polymerase chain reaction; Treatment  (1)
  • PANGAEA  (1)
Document type
Keywords
Publisher
  • PANGAEA  (1)
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Roth, Olivia; Landis, Susanne H (2017): Trans-generational plasticity in response to immune challenge is constrained by heat stress. Evolutionary Applications, 10(5), 514-528, https://doi.org/10.1111/eva.12473
    Publication Date: 2023-01-24
    Description: Trans-generational plasticity is the adjustment of phenotypes to changing habitat conditions that persist longer than the individual lifetime. Fitness benefits (adaptive TGP) are expected upon matching parent-offspring environments. In a global change scenario, several performance-related environmental factors are changing simultaneously. This lowers the predictability of offspring environmental conditions, potentially hampering the benefits of trans-generational plasticity. For the first time, we here explore how the combination of an abiotic and a biotic environmental factor in the parental generation plays out as trans-generational effect in the offspring. We fully reciprocally exposed the parental generation of the pipefish Syngnathus typhle to an immune challenge and elevated temperatures simulating a naturally occurring heatwave. Upon mating and male pregnancy, offspring were kept in ambient or elevated temperature regimes combined with a heat-killed bacterial epitope treatment. Differential gene expression (immune genes and DNA- and histone-modification genes) suggests that the combined change of an abiotic and a biotic factor in the parental generation had interactive effects on offspring performance, the temperature effect dominated over the immune challenge impact. The benefits of certain parental environmental conditions on offspring performance did not sum up when abiotic and biotic factors were changed simultaneously supporting that available resources are limited that can be allocated to phenotypic trans-generational effects. Temperature is the master regulator of trans-generational phenotypic plasticity, which potentially implies a conflict in the allocation of resources towards several environmental factors. This asks for a reassessment of trans-generational plasticity as a short-term option to buffer environmental variation in the light of climate change.
    Keywords: Body length; Family; Identification; Replicate; Sample code/label; Species; Threshold cycle, quantitative polymerase chain reaction; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 17228 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...