GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • BIOACID; Biological Impacts of Ocean Acidification  (3)
  • Abundance per volume; Aglantha digitale; Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chlorophyll a; Chlorophyll a, standard deviation; Clytia sp.; Coast and continental shelf; DATE/TIME; Day of experiment; Dry mass; Dry mass per individual; Entire community; Event label; Field experiment; Fish; Fjord; Fraction; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Growth/Morphology; Identification; Indeterminata; Individual dry mass; Individuals; KOSMOS_2015; KOSMOS_2015_Mesocosm-M1; KOSMOS_2015_Mesocosm-M2; KOSMOS_2015_Mesocosm-M3; KOSMOS_2015_Mesocosm-M4; KOSMOS_2015_Mesocosm-M5; KOSMOS_2015_Mesocosm-M6; KOSMOS_2015_Mesocosm-M7; KOSMOS_2015_Mesocosm-M8; KOSMOS_2015_Mesocosm-M9; KOSMOS Bergen; Length, standard; Mass per volume; MESO; Mesocosm experiment; Mesocosm label; Mesocosm or benthocosm; Method comment; Mortality/Survival; North Atlantic; Number of individuals; OA-ICC; Obelia geniculata; Ocean Acidification International Coordination Centre; Origin; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Potentiometric titration; Rathkea octopunctata; Ratio; Salinity; Salinity, standard deviation; Sample code/label; Sarsia tubulosa; Species; Status; Temperate; Temperature, water; Temperature, water, standard deviation; Time in days; Tomopteris sp.; Treatment; Treatment: partial pressure of carbon dioxide; Type; Volume  (1)
  • PANGAEA  (4)
Document type
Keywords
Publisher
  • PANGAEA  (4)
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  GEOMAR - Helmholtz Centre for Ocean Research Kiel | Supplement to: Sswat, Michael; Stiasny, Martina H; Jutfelt, Fredrik; Riebesell, Ulf; Clemmesen, Catriona (2018): Growth performance and survival of larval Atlantic herring, under the combined effects of elevated temperatures and CO2. PLoS ONE, 13(1), e0191947, https://doi.org/10.1371/journal.pone.0191947
    Publication Date: 2023-02-24
    Description: In the coming decades, environmental change like warming and acidification will affect life in the ocean. While data on single stressor effects on fish are accumulating rapidly, we still know relatively little about interactive effects of multiple drivers. Of particular concern in this context are the early life stages of fish, for which direct effects of increased CO2 on growth and development have been observed. Whether these effects are further modified by elevated temperature was investigated here for the larvae of Atlantic herring (Clupea harengus), a commercially important fish species. Over a period of 32 days, larval survival, growth in size and weight, and instantaneous growth rate were assessed in a crossed experimental design of two temperatures (10°C and 12°C) with two CO2 levels (400 µatm and 900 µatm CO2) at food levels mimicking natural levels using natural prey. Elevated temperature alone led to increased swimming activity, as well as decreased survival and instantaneous growth rate (Gi). The comparatively high sensitivity to elevated temperature in this study may have been influenced by low food levels offered to the larvae. Larval size, Gi and swimming activity were not affected by CO2, indicating tolerance of this species to projected "end of the century" CO2 levels. A synergistic effect of elevated temperature and CO2 was found for larval weight, where no effect of elevated CO2 concentrations was detected in the 12°C treatment, but a negative CO2 effect was found in the 10°C treatment. Contrasting CO2 effects were found for survival between the two temperatures. Under ambient CO2 conditions survival was increased at 12°C compared to 10°C. In general, CO2 effects were minor and considered negligible compared to the effect of temperature under these mimicked natural food conditions. These findings emphasize the need to include biotic factors such as energy supply via prey availability in future studies on interactive effects of multiple stressors.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stiasny, Martina H; Mittermayer, Felix H; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B H; Clemmesen, Catriona; Gobler, Christopher J (2016): Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population. PLoS ONE, 11(8), e0155448, https://doi.org/10.1371/journal.pone.0155448
    Publication Date: 2023-04-29
    Description: The data show the survival data of Atlantic cod larvae from two different stocks, which were measured in two separate experiments in Kristineberg, Sweden in 2013 on the Western Baltic stock and in Tromsö, Norway in 2014 on the Barents Sea stock. Survival was measured as a response to ocean acidification, control tanks were kept at ambient CO2 concentrations. CO2 concentrations and feeding concentrations are also provided.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stiasny, Martina H; Mittermayer, Felix H; Göttler, Gwendolin; Bridges, Christopher R; Falk-Petersen, Stig; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B H; Clemmesen, Catriona (2018): Effects of parental acclimation and energy limitation in response to high CO2 exposure in Atlantic cod. Scientific Reports, 8(1), https://doi.org/10.1038/s41598-018-26711-y
    Publication Date: 2023-04-29
    Description: Ocean acidification (OA), the dissolution of excess anthropogenic carbon dioxide in ocean waters, is a potential stressor to many marine fish species. Whether species have the potential to acclimate and adapt to changes in the seawater carbonate chemistry is still largely unanswered. Simulation experiments across several generations are challenging for large commercially exploited species because of their long generation times. For Atlantic cod (Gadus morhua), we present first data on the effects of parental acclimation to elevated aquatic CO2 on larval survival, a fundamental parameter determining population recruitment. The parental generation in this study was exposed to either ambient or elevated aquatic CO2 levels simulating end-of-century OA levels (~1100 µatm CO2) for six weeks prior to spawning. Upon fully reciprocal exposure of the F1 generation, we quantified larval survival, combined with two larval feeding regimes in order to investigate the potential effect of energy limitation. We found a significant reduction in larval survival at elevated CO2 that was partly compensated by parental acclimation to the same CO2 exposure. Such compensation was only observed in the treatment with high food availability. This complex 3-way interaction indicates that surplus metabolic resources need to be available to allow a transgenerational alleviation response to ocean acidification.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-15
    Description: Anthropogenic CO2 emissions cause a drop in seawater pH and shift the inorganic carbon speciation. Collectively, the term ocean acidification (OA) summarizes these changes. Few studies have examined OA effects on predatory plankton, e.g. Hydrozoa and fish larvae as well as their interaction in complex natural communities. Because Hydrozoa can seriously compete with and prey on other higher-level predators such as fish, changes in their abundances may have significant consequences for marine food webs and ecosystem services. To investigate the interaction between Hydrozoa and fish larvae influenced by OA, we enclosed a natural plankton community in Raunefjord, Norway, for 53 days in eight ≈ 58 m³ pelagic mesocosms. CO2 levels in four mesocosms were increased to ≈ 2000 µatm pCO2, whereas the other four served as untreated controls. We studied OA-induced changes at the top of the food web by following ≈2000 larvae of Atlantic herring (Clupea harengus) hatched inside each mesocosm during the first week of the experiment, and a Hydrozoa population that had already established inside the mesocosms. Under OA, we detected 20% higher abundance of hydromedusae staged jellyfish, but 25% lower biomass. At the same time, survival rates of Atlantic herring larvae were higher under OA (control pCO2: 0.1%, high pCO2: 1.7%) in the final phase of the study. These results indicate that a decrease in predation pressure shortly after hatch likely shaped higher herring larvae survival, when hydromedusae abundance was lower in the OA treatment compared to control conditions. We conclude that indirect food-web mediated OA effects drove the observed changes in the Hydrozoa – fish relationship, based on significant changes in the phyto-, micro-, and mesoplankton community under high pCO2. Ultimately, the observed immediate consequences of these changes for fish larvae survival and the balance of the Hydrozoa – fish larvae predator – prey relationship has important implications for the functioning of oceanic food webs.
    Keywords: Abundance per volume; Aglantha digitale; Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chlorophyll a; Chlorophyll a, standard deviation; Clytia sp.; Coast and continental shelf; DATE/TIME; Day of experiment; Dry mass; Dry mass per individual; Entire community; Event label; Field experiment; Fish; Fjord; Fraction; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Growth/Morphology; Identification; Indeterminata; Individual dry mass; Individuals; KOSMOS_2015; KOSMOS_2015_Mesocosm-M1; KOSMOS_2015_Mesocosm-M2; KOSMOS_2015_Mesocosm-M3; KOSMOS_2015_Mesocosm-M4; KOSMOS_2015_Mesocosm-M5; KOSMOS_2015_Mesocosm-M6; KOSMOS_2015_Mesocosm-M7; KOSMOS_2015_Mesocosm-M8; KOSMOS_2015_Mesocosm-M9; KOSMOS Bergen; Length, standard; Mass per volume; MESO; Mesocosm experiment; Mesocosm label; Mesocosm or benthocosm; Method comment; Mortality/Survival; North Atlantic; Number of individuals; OA-ICC; Obelia geniculata; Ocean Acidification International Coordination Centre; Origin; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Potentiometric titration; Rathkea octopunctata; Ratio; Salinity; Salinity, standard deviation; Sample code/label; Sarsia tubulosa; Species; Status; Temperate; Temperature, water; Temperature, water, standard deviation; Time in days; Tomopteris sp.; Treatment; Treatment: partial pressure of carbon dioxide; Type; Volume
    Type: Dataset
    Format: text/tab-separated-values, 32668 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...