GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIRICA analyzer (Miranda); Australia; Carbon, inorganic, dissolved; Carbon, organic, dissolved; Clarence_Estuary; DEPTH, sediment/rock; DEPTH, water; estuaries; EXP; Experiment; LDO-probe; Ocean acidification; Oxygen saturation; pH; pH probe; Replicates; Salinity; SALINO; Salinometer; sediment; Surface area; Temperature, water; Temperature sensor; Time in minutes; Time point, descriptive; TOC analyser, Aurora 1030W; Treatment; Volume; warming  (1)
  • Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate/Nitrogen, organic, particulate ratio; Carbon, organic, particulate/Nitrogen, organic, particulate ratio, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure; Carbon dioxide, partial pressure, standard deviation; Carbon dioxide, standard deviation; Chromista; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gephyrocapsa oceanica; Growth/Morphology; Growth rate; Growth rate, standard deviation; Haptophyta; Initial slope of rapid light curve; Initial slope of rapid light curve, standard deviation; Laboratory experiment; Laboratory strains; Light; Light intensity; Light saturation point; Light saturation point, standard deviation; Maximal electron transport rate, relative; Maximal electron transport rate, relative, standard deviation; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon, production, standard deviation; Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon/particulate organic carbon ratio, standard deviation; Particulate inorganic carbon production per cell; Particulate organic carbon, production, standard deviation; Particulate organic carbon production per cell; Pelagos; pH; pH, standard deviation; Phosphate; Phytoplankton; Potentiometric titration; Primary production/Photosynthesis; Registration number of species; Salinity; Single species; Species; Temperature, water; Type; Uniform resource locator/link to reference
  • PANGAEA  (1)
Document type
Keywords
Publisher
  • PANGAEA  (1)
Years
  • 1
    Publication Date: 2024-01-02
    Description: Dissolved organic/inorganic carbon and oxygen fluxes from whole sediment core incubations subject to temperature and ocean acidification manipulations. Estuaries make a disproportionately large contribution of dissolved organic carbon (DOC) to the global carbon cycle, but it is unknown how this will change under a future climate. As such, the response of DOC fluxes from microbially dominated unvegetated sediments to individual and combined future climate stressors of warming (from Δ-3 °C to Δ+5 °C on ambient mean temperatures) and ocean acidification (OA, ~2 times the current partial pressure of CO2, pCO2) was investigated ex situ. Warming alone increased sediment heterotrophy, resulting in a proportional increase in sediment DOC uptake, with sediments becoming net sinks of DOC (3.5 to 8.8 mmol-C m-2 d-1) at warmer temperatures (Δ+3 °C and Δ+5 °C, respectively). This temperature response changed under OA conditions, with sediments becoming more autotrophic and a greater sink of DOC (1 to 4 times greater than under current-pCO2). This response was attributed to the stimulation of heterotrophic bacteria with the autochthonous production of labile organic matter by microphytobenthos. Extrapolating these results to the global area of unvegetated subtidal estuarine sediments, the future climate of warming (Δ+3 °C) and OA may decrease the estuarine export of DOC by ~80 % (~150 Tg-C yr-1) and have a disproportionately large impact on the global DOC budget.
    Keywords: AIRICA analyzer (Miranda); Australia; Carbon, inorganic, dissolved; Carbon, organic, dissolved; Clarence_Estuary; DEPTH, sediment/rock; DEPTH, water; estuaries; EXP; Experiment; LDO-probe; Ocean acidification; Oxygen saturation; pH; pH probe; Replicates; Salinity; SALINO; Salinometer; sediment; Surface area; Temperature, water; Temperature sensor; Time in minutes; Time point, descriptive; TOC analyser, Aurora 1030W; Treatment; Volume; warming
    Type: Dataset
    Format: text/tab-separated-values, 1053 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...