GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (4)
  • Public Library of Science  (1)
Document type
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lichtschlag, Anna; Cevatoglu, Melis; Connelly, Douglas P; James, Rachael H; Bull, Jonathan M (2018): Increased Fluid Flow Activity in Shallow Sediments at the 3 km Long Hugin Fracture in the Central North Sea. Geochemistry, Geophysics, Geosystems, 19(1), 2-20, https://doi.org/10.1002/2017GC007181
    Publication Date: 2023-02-24
    Description: The North Sea hosts a wide variety of seafloor seeps that may be important for transfer of chemical species, such as methane, from the Earth's interior to its exterior. Here we provide geochemical and geophysical evidence for fluid flow within shallow sediments at the recently discovered, 3 -km long Hugin Fracture in the Central North Sea. Although venting of gas bubbles was not observed, concentrations of dissolved methane were significantly elevated (up to six-times background values) in the water column at various locations above the fracture, and microbial mats that form in the presence of methane were observed at the seafloor. Seismic amplitude anomalies revealed a bright spot at a fault bend that may be the source of the water column methane. Sediment porewaters recovered in close proximity to the Hugin Fracture indicate the presence of fluids from two different shallow (〈500 m) sources: (i) a reduced fluid characterized by elevated methane concentrations and/or high levels of dissolved sulfide (up to 6 mmol L-1), and (ii) a low-chlorinity fluid (Cl ~305 mmol L-1) that has low levels of dissolved methane and/or sulfide. The area of the seafloor affected by the presence of methane-enriched fluids is similar to the footprint of seepage from other morphological features in the North Sea.
    Keywords: ECO2; Sub-seabed CO2 Storage: Impact on Marine Ecosystems
    Type: Dataset
    Format: application/zip, 25 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-24
    Keywords: AA; Alkalinity, total; Autoanalyzer; Carbon, inorganic, dissolved; Cast number; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; ECO2; Elevation of event; Event label; Gas chromatography; James Cook; JC077; JC077-CTD1; JC077-CTD10; JC077-CTD11; JC077-CTD12; JC077-CTD13; JC077-CTD14; JC077-CTD15; JC077-CTD16; JC077-CTD17; JC077-CTD18; JC077-CTD19; JC077-CTD2; JC077-CTD20; JC077-CTD21; JC077-CTD22; JC077-CTD23; JC077-CTD24; JC077-CTD25; JC077-CTD26; JC077-CTD27; JC077-CTD28; JC077-CTD29; JC077-CTD3; JC077-CTD30; JC077-CTD31; JC077-CTD32; JC077-CTD33; JC077-CTD34; JC077-CTD35; JC077-CTD36; JC077-CTD37; JC077-CTD38; JC077-CTD39; JC077-CTD4; JC077-CTD40; JC077-CTD41; JC077-CTD42; JC077-CTD43; JC077-CTD44; JC077-CTD45; JC077-CTD46; JC077-CTD47; JC077-CTD48; JC077-CTD49; JC077-CTD5; JC077-CTD50; JC077-CTD51; JC077-CTD52; JC077-CTD53; JC077-CTD54; JC077-CTD55; JC077-CTD56; JC077-CTD57; JC077-CTD58; JC077-CTD59; JC077-CTD6; JC077-CTD60; JC077-CTD61; JC077-CTD62; JC077-CTD63; JC077-CTD64; JC077-CTD7; JC077-CTD8; JC077-CTD9; Latitude of event; Longitude of event; Methane; Nitrate and Nitrite; Oxygen; Phosphate; Silicate; Sub-seabed CO2 Storage: Impact on Marine Ecosystems; Titration; Titration, Winkler
    Type: Dataset
    Format: text/tab-separated-values, 1874 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hawkes, Jeffrey A; Rossel, Pamela E; Stubbins, Aron; Butterfield, David A; Connelly, Douglas P; Achterberg, Eric Pieter; Koschinsky, Andrea; Chavagnac, Valerie; Hansen, Christian T; Bach, Wolfgang; Dittmar, Thorsten (2015): Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation. Nature Geoscience, 8(11), 856-860, https://doi.org/10.1038/ngeo2543
    Publication Date: 2024-02-17
    Description: Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood (Dittmar and Stubbins, 2014; Hansell, 2013, doi:10.1146/annurev-marine-120710-100757). Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401 °C. In laboratory experiments, where we heated samples to 380 °C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years (Elderfield and Schultz, 1996, doi:10.1146/annurev.earth.24.1.191).
    Keywords: Akademik Mstislav Keldysh; AMK47; AMK47-Lost_City; AT18-08; Atlantis (1997); Carbon, organic, dissolved; Carbon, organic, dissolved, extracted; Comment; Comment 2 (continued); Contamination; CTD/Rosette; CTD-RO; Description; Error; Event label; Factor; Identification; ISIS; ISIS MS2000; J2-574; J2-575; J2-576; J2-579; J2-580; J2-581; J2-583; James Cook; JC042; JC080; JC082; JC42_ISIS_130; JC42_ISIS_133; JC42_ISIS_134; JC42_ISIS_141; JC80_015_CTD; JC80_ISIS_189; JC80_ISIS_190; JC80_ISIS_194; JC82_ISIS_198; JC82_ISIS_200; JC82_ISIS_202; JC82_ISIS_204; JC82_ISIS_206; JC82_ISIS_207; Juan_de_Fuca_Ridge_Axial; Juan_de_Fuca_Ridge_Endeavour; Latitude of event; Lithology/composition/facies; Longitude of event; Lost City Hydrothermal Field, Mid-Atlantic Ridge; M82/3; M82/3_719-1; M82/3_722-1; M82/3_739-1; M82/3_756-1; Magnesium; Maria S. Merian; Meteor (1986); MIR; MIR deep-sea manned submersible; MSM10/3; MSM10/3_290ROV-11; MSM10/3_300; MSM10/3_313ROV-12; Name; Ocean and sea region; Percentage; Precision; Remote operated vehicle; Remote operated vehicle Jason II; ROV; ROVJ; Sample type; Sample volume; Sampling date; Site; Solid phase extractable; South Atlantic Ocean; tropical/subtropical North Atlantic; Type; Volume; Wakamiko_Crater
    Type: Dataset
    Format: text/tab-separated-values, 4130 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-13
    Keywords: Conductivity; CTD/Rosette; CTD-RO; Date/Time of event; Density, mass density; DEPTH, water; ECO2; Elevation of event; Event label; James Cook; JC077; JC077-CTD1; JC077-CTD10; JC077-CTD11; JC077-CTD12; JC077-CTD13; JC077-CTD14; JC077-CTD15; JC077-CTD16; JC077-CTD17; JC077-CTD18; JC077-CTD19; JC077-CTD2; JC077-CTD20; JC077-CTD21; JC077-CTD22; JC077-CTD23; JC077-CTD24; JC077-CTD25; JC077-CTD26; JC077-CTD27; JC077-CTD28; JC077-CTD29; JC077-CTD3; JC077-CTD30; JC077-CTD31; JC077-CTD32; JC077-CTD33; JC077-CTD34; JC077-CTD35; JC077-CTD36; JC077-CTD37; JC077-CTD38; JC077-CTD39; JC077-CTD4; JC077-CTD40; JC077-CTD41; JC077-CTD42; JC077-CTD43; JC077-CTD44; JC077-CTD45; JC077-CTD46; JC077-CTD47; JC077-CTD48; JC077-CTD49; JC077-CTD5; JC077-CTD50; JC077-CTD51; JC077-CTD52; JC077-CTD53; JC077-CTD54; JC077-CTD55; JC077-CTD56; JC077-CTD57; JC077-CTD58; JC077-CTD59; JC077-CTD6; JC077-CTD60; JC077-CTD61; JC077-CTD62; JC077-CTD63; JC077-CTD64; JC077-CTD7; JC077-CTD8; JC077-CTD9; Latitude of event; Longitude of event; Oxygen saturation; Pressure, water; Salinity; Sub-seabed CO2 Storage: Impact on Marine Ecosystems; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 27474 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS Biology 10 (2012): e1001234, doi:10.1371/journal.pbio.1001234.
    Description: Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than previously recognised.
    Description: The ChEsSo research programme was funded by a NERC Consortium Grant (NE/DO1249X/1) and supported by the Census of Marine Life and the Sloan Foundation, and the Total Foundation for Biodiversity (Abyss 2100)(SVTH) all of which are gratefully acknowledged. We also acknowledge NSF grant ANT-0739675 (CG and TS), NERC PhD studentships NE/D01429X/1(LH, LM, CNR), NE/H524922/1(JH) and NE/F010664/1 (WDKR), a Cusanuswerk doctoral fellowship, and a Lesley & Charles Hilton-Brown Scholarship, University of St. Andrews (PHBS).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...