GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (3)
Material
Publisher
  • Oxford University Press (OUP)  (3)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Briefings in Bioinformatics Vol. 22, No. 6 ( 2021-11-05)
    In: Briefings in Bioinformatics, Oxford University Press (OUP), Vol. 22, No. 6 ( 2021-11-05)
    Abstract: RNA-seq technology is widely employed in various research areas related to transcriptome analyses, and the identification of all the expressed transcripts from short sequencing reads presents a considerable computational challenge. In this study, we introduce TransRef, a new computational algorithm for accurate transcriptome assembly by redefining a novel graph model, the neo-splicing graph, and then iteratively applying a constrained dynamic programming to reconstruct all the expressed transcripts for each graph. When TransRef is utilized to analyze both real and simulated datasets, its performance is notably better than those of several state-of-the-art assemblers, including StringTie2, Cufflinks and Scallop. In particular, the performance of TransRef is notably strong in identifying novel transcripts and transcripts with low-expression levels, while the other assemblers are less effective.
    Type of Medium: Online Resource
    ISSN: 1467-5463 , 1477-4054
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2036055-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Briefings in Bioinformatics Vol. 23, No. 1 ( 2022-01-17)
    In: Briefings in Bioinformatics, Oxford University Press (OUP), Vol. 23, No. 1 ( 2022-01-17)
    Abstract: The development of single-cell ribonucleic acid (RNA) sequencing (scRNA-seq) technology has led to great opportunities for the identification of heterogeneous cell types in complex tissues. Clustering algorithms are of great importance to effectively identify different cell types. In addition, the definition of the distance between each two cells is a critical step for most clustering algorithms. In this study, we found that different distance measures have considerably different effects on clustering algorithms. Moreover, there is no specific distance measure that is applicable to all datasets. In this study, we introduce a new single-cell clustering method called SD-h, which generates an applicable distance measure for different kinds of datasets by optimally synthesizing commonly used distance measures. Then, hierarchical clustering is performed based on the new distance measure for more accurate cell-type clustering. SD-h was tested on nine frequently used scRNA-seq datasets and it showed great superiority over almost all the compared leading single-cell clustering algorithms.
    Type of Medium: Online Resource
    ISSN: 1467-5463 , 1477-4054
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2036055-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 49, No. 13 ( 2021-07-21), p. 7347-7360
    Abstract: Lysine 2-hydroxyisobutyrylation (Khib) is a novel type of histone acylation whose prevalence and function in plants remain unclear. Here, we identified 41 Khib sites on histones in Arabidopsis thaliana, which did not overlap with frequently modified N-tail lysines (e.g. H3K4, H3K9 and H4K8). Chromatin immunoprecipitation-sequencing (ChIP-seq) assays revealed histone Khib in 35% of protein-coding genes. Most Khib peaks were located in genic regions, and they were highly enriched at the transcription start sites. Histone Khib is highly correlated with acetylation (ac), particularly H3K23ac, which it largely resembles in its genomic and genic distribution. Notably, co-enrichment of histone Khib and H3K23ac correlates with high gene expression levels. Metabolic profiling, transcriptome analyses, and ChIP-qPCR revealed that histone Khib and H3K23ac are co-enriched on genes involved in starch and sucrose metabolism, pentose and glucuronate interconversions, and phenylpropanoid biosynthesis, and help fine-tune plant response to dark-induced starvation. These findings suggest that Khib and H3K23ac may act in concert to promote high levels of gene transcription and regulate cellular metabolism to facilitate plant adaption to stress. Finally, HDA6 and HDA9 are involved in removing histone Khib. Our findings reveal Khib as a conserved yet unique plant histone mark acting with lysine acetylation in transcription-associated epigenomic processes.
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...