GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (3)
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2006
    In:  Journal of Experimental Botany Vol. 57, No. 5 ( 2006-03-01), p. 1129-1135
    In: Journal of Experimental Botany, Oxford University Press (OUP), Vol. 57, No. 5 ( 2006-03-01), p. 1129-1135
    Type of Medium: Online Resource
    ISSN: 1460-2431 , 0022-0957
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2006
    detail.hit.zdb_id: 1466717-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Bioinformatics Vol. 38, No. 19 ( 2022-09-30), p. 4562-4572
    In: Bioinformatics, Oxford University Press (OUP), Vol. 38, No. 19 ( 2022-09-30), p. 4562-4572
    Abstract: Automatic recognition of chemical structures from molecular images provides an important avenue for the rediscovery of chemicals. Traditional rule-based approaches that rely on expert knowledge and fail to consider all the stylistic variations of molecular images usually suffer from cumbersome recognition processes and low generalization ability. Deep learning-based methods that integrate different image styles and automatically learn valuable features are flexible, but currently under-researched and have limitations, and are therefore not fully exploited. Results MICER, an encoder–decoder-based, reconstructed architecture for molecular image captioning, combines transfer learning, attention mechanisms and several strategies to strengthen effectiveness and plasticity in different datasets. The effects of stereochemical information, molecular complexity, data volume and pre-trained encoders on MICER performance were evaluated. Experimental results show that the intrinsic features of the molecular images and the sub-model match have a significant impact on the performance of this task. These findings inspire us to design the training dataset and the encoder for the final validation model, and the experimental results suggest that the MICER model consistently outperforms the state-of-the-art methods on four datasets. MICER was more reliable and scalable due to its interpretability and transfer capacity and provides a practical framework for developing comprehensive and accurate automated molecular structure identification tools to explore unknown chemical space. Availability and implementation https://github.com/Jiacai-Yi/MICER. Supplementary information Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4803 , 1367-4811
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 49, No. 6 ( 2021-04-06), p. e36-e36
    Abstract: Several existing technologies enable short genomic alterations including generating indels and short nucleotide variants, however, engineering more significant genomic changes is more challenging due to reduced efficiency and precision. Here, we developed RecT Editor via Designer-Cas9-Initiated Targeting (REDIT), which leverages phage single-stranded DNA-annealing proteins (SSAP) RecT for mammalian genome engineering. Relative to Cas9-mediated homology-directed repair (HDR), REDIT yielded up to a 5-fold increase of efficiency to insert kilobase-scale exogenous sequences at defined genomic regions. We validated our REDIT approach using different formats and lengths of knock-in templates. We further demonstrated that REDIT tools using Cas9 nickase have efficient gene-editing activities and reduced off-target errors, measured using a combination of targeted sequencing, genome-wide indel, and insertion mapping assays. Our experiments inhibiting repair enzyme activities suggested that REDIT has the potential to overcome limitations of endogenous DNA repair steps. Finally, our REDIT method is applicable across cell types including human stem cells, and is generalizable to different Cas9 enzymes.
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...