GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (1)
Material
Publisher
  • Oxford University Press (OUP)  (1)
Person/Organisation
Language
Years
FID
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2012
    In:  Journal of Pharmacy and Pharmacology Vol. 64, No. 12 ( 2012-11-12), p. 1741-1750
    In: Journal of Pharmacy and Pharmacology, Oxford University Press (OUP), Vol. 64, No. 12 ( 2012-11-12), p. 1741-1750
    Abstract: Chemoresistance is the main obstacle encountered in cancer treatment and is frequently associated with multidrug resistance (MDR). Astragaloside is a saponin which is widely used in traditional Chinese medicine. It has been reported that Astragaloside has antitumour effects on hepatocellular carcinoma Bel-7402 cells in vitro and in vivo. The purpose of this study was to examine the effects of Astragaloside II on the reversal of MDR and its molecular mechanism in vitro. Methods In this study, Bel-7402 and Bel-7402/FU cell lines were used as the experimental model. Drug sensitivity was determined using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, accumulation and efflux of Rh123 were analyzed by flow cytometer, the mRNA level of mdr1 was determined by RT-PCR and the protein levels of P-glycoprotein (P-gp) and mitogen-activated protein kinase were determined by Western blot. Key findings Astragaloside II (0.08 mg/ml) showed strong potency to increase 5-fluorouracil cytotoxicity toward 5-fluorouracil-resistant human hepatic cancer cells Bel-7402/FU. The mechanism of Astragaloside II on P-gp-mediated MDR demonstrated that Astragaloside II significantly increased the intracellular accumulation of rhodamine 123 via inhibition of P-gp transport function. Based on the analysis of P-gp and mdr1 gene expression using Western blot and RT-PCR, the results revealed that Astragaloside II could downregulate the expression of the P-gp and mdr1 gene. In addition, Astragaloside II suppressed phosphorylation of extracellular signal regulated kinase 1/2, p38 and c-Jun N-terminal kinase. Conclusions The results suggested that Astragaloside II is a potent MDR reversal agent and may be a potential adjunctive agent for hepatic cancer chemotherapy.
    Type of Medium: Online Resource
    ISSN: 2042-7158 , 0022-3573
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2012
    detail.hit.zdb_id: 2041988-0
    detail.hit.zdb_id: 2050532-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...