GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (6)
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2014
    In:  Bioinformatics Vol. 30, No. 7 ( 2014-04-01), p. 1015-1016
    In: Bioinformatics, Oxford University Press (OUP), Vol. 30, No. 7 ( 2014-04-01), p. 1015-1016
    Abstract: Motivation: Microsatellite instability (MSI) is an important indicator of larger genome instability and has been linked to many genetic diseases, including Lynch syndrome. MSI status is also an independent prognostic factor for favorable survival in multiple cancer types, such as colorectal and endometrial. It also informs the choice of chemotherapeutic agents. However, the current PCR–electrophoresis-based detection procedure is laborious and time-consuming, often requiring visual inspection to categorize samples. We developed MSIsensor, a C++ program for automatically detecting somatic microsatellite changes. It computes length distributions of microsatellites per site in paired tumor and normal sequence data, subsequently using these to statistically compare observed distributions in both samples. Comprehensive testing indicates MSIsensor is an efficient and effective tool for deriving MSI status from standard tumor-normal paired sequence data. Availability and implementation:  https://github.com/ding-lab/msisensor Contact:  kye@genome.wustl.edu or lding@genome.wustl.edu Supplementary information:  Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4811 , 1367-4803
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2014
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Bioinformatics, Oxford University Press (OUP), Vol. 33, No. 19 ( 2017-10-01), p. 3121-3122
    Abstract: BreakPoint Surveyor (BPS) is a computational pipeline for the discovery, characterization, and visualization of complex genomic rearrangements, such as viral genome integration, in paired-end sequence data. BPS facilitates interpretation of structural variants by merging structural variant breakpoint predictions, gene exon structure, read depth, and RNA-sequencing expression into a single comprehensive figure. Availability and implementation Source code and sample data freely available for download at https://github.com/ding-lab/BreakPointSurveyor, distributed under the GNU GPLv3 license, implemented in R, Python and BASH scripts, and supported on Unix/Linux/OS X operating systems. Supplementary information Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4803 , 1367-4811
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Bioinformatics Advances, Oxford University Press (OUP), Vol. 2, No. 1 ( 2022-01-10)
    Abstract: The use of single-cell methods is expanding at an ever-increasing rate. While there are established algorithms that address cell classification, they are limited in terms of cross platform compatibility, reliance on the availability of a reference dataset and classification interpretability. Here, we introduce Pollock, a suite of algorithms for cell type identification that is compatible with popular single-cell methods and analysis platforms, provides a set of pretrained human cancer reference models, and reports interpretability scores that identify the genes that drive cell type classifications. Results Pollock performs comparably to existing classification methods, while offering easily deployable pretrained classification models across a wide variety of tissue and data types. Additionally, it demonstrates utility in immune pan-cancer analysis. Availability and implementation Source code and documentation are available at https://github.com/ding-lab/pollock. Pretrained models and datasets are available for download at https://zenodo.org/record/5895221. Supplementary information Supplementary data are available at Bioinformatics Advances online.
    Type of Medium: Online Resource
    ISSN: 2635-0041
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 3076075-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Briefings in Bioinformatics, Oxford University Press (OUP), Vol. 22, No. 5 ( 2021-09-02)
    Abstract: Motivation: Microsatellite instability (MSI) is a promising biomarker for cancer prognosis and chemosensitivity. Techniques are rapidly evolving for the detection of MSI from tumor-normal paired or tumor-only sequencing data. However, tumor tissues are often insufficient, unavailable, or otherwise difficult to procure. Increasing clinical evidence indicates the enormous potential of plasma circulating cell-free DNA (cfNDA) technology as a noninvasive MSI detection approach. Results: We developed MSIsensor-ct, a bioinformatics tool based on a machine learning protocol, dedicated to detecting MSI status using cfDNA sequencing data with a potential stable MSIscore threshold of 20%. Evaluation of MSIsensor-ct on independent testing datasets with various levels of circulating tumor DNA (ctDNA) and sequencing depth showed 100% accuracy within the limit of detection (LOD) of 0.05% ctDNA content. MSIsensor-ct requires only BAM files as input, rendering it user-friendly and readily integrated into next generation sequencing (NGS) analysis pipelines. Availability: MSIsensor-ct is freely available at https://github.com/niu-lab/MSIsensor-ct. Supplementary information: Supplementary data are available at Briefings in Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1467-5463 , 1477-4054
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2036055-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2004
    In:  Bioinformatics Vol. 20, No. 10 ( 2004-07-01), p. 1527-1534
    In: Bioinformatics, Oxford University Press (OUP), Vol. 20, No. 10 ( 2004-07-01), p. 1527-1534
    Abstract: Motivation: Investigators utilize gap estimates for DNA sequencing projects. Standard theories assume sequences are independently and identically distributed, leading to appreciable under-prediction of gaps. Results: Using a statistical scaling factor and data from 20 representative whole genome shotgun projects, we construct regression equations that relate coverage to a normalized gap measure. Prokaryotic genomes do not correlate to sequence coverage, while eukaryotes show strong correlation if the chaff is ignored. Gaps decrease at an exponential rate of only about one-third of that predicted via theory alone. Case studies suggest that departure from theory can largely be attributed to assembly difficulties for repeat-rich genomes, but bias and coverage anomalies are also important when repeats are sparse. Such factors cannot be readily characterized a priori, suggesting upper limits on the accuracy of gap prediction. We also find that diminishing coverage probability discussed in other studies is a theoretical artifact that does not arise for the typical project.
    Type of Medium: Online Resource
    ISSN: 1367-4811 , 1367-4803
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2004
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2011
    In:  Bioinformatics Vol. 27, No. 12 ( 2011-06-15), p. 1595-1602
    In: Bioinformatics, Oxford University Press (OUP), Vol. 27, No. 12 ( 2011-06-15), p. 1595-1602
    Abstract: Motivation: The expansion of cancer genome sequencing continues to stimulate development of analytical tools for inferring relationships between somatic changes and tumor development. Pathway associations are especially consequential, but existing algorithms are demonstrably inadequate. Methods: Here, we propose the PathScan significance test for the scenario where pathway mutations collectively contribute to tumor development. Its design addresses two aspects that established methods neglect. First, we account for variations in gene length and the consequent differences in their mutation probabilities under the standard null hypothesis of random mutation. The associated spike in computational effort is mitigated by accurate convolution-based approximation. Second, we combine individual probabilities into a multiple-sample value using Fisher–Lancaster theory, thereby improving differentiation between a few highly mutated genes and many genes having only a few mutations apiece. We investigate accuracy, computational effort and power, reporting acceptable performance for each. Results: As an example calculation, we re-analyze KEGG-based lung adenocarcinoma pathway mutations from the Tumor Sequencing Project. Our test recapitulates the most significant pathways and finds that others for which the original test battery was inconclusive are not actually significant. It also identifies the focal adhesion pathway as being significantly mutated, a finding consistent with earlier studies. We also expand this analysis to other databases: Reactome, BioCarta, Pfam, PID and SMART, finding additional hits in ErbB and EPHA signaling pathways and regulation of telomerase. All have implications and plausible mechanistic roles in cancer. Finally, we discuss aspects of extending the method to integrate gene-specific background rates and other types of genetic anomalies. Availability: PathScan is implemented in Perl and is available from the Genome Institute at: http://genome.wustl.edu/software/pathscan. Contact:  mwendl@wustl.edu Supplementary information:  Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4811 , 1367-4803
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2011
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...