GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (51)
  • 1
    In: G3 Genes|Genomes|Genetics, Oxford University Press (OUP), Vol. 6, No. 9 ( 2016-09-01), p. 2717-2724
    Abstract: Cotton fiber, a raw natural fiber material, is widely used in the textile industry. Understanding the genetic mechanism of fiber traits is helpful for fiber quality improvement. In the present study, the genetic basis of fiber quality traits was explored using two recombinant inbred lines (RILs) and corresponding backcross (BC) populations under multiple environments in Upland cotton based on marker analysis. In backcross populations, no significant correlation was observed between marker heterozygosity and fiber quality performance and it suggested that heterozygosity was not always necessarily advantageous for the high fiber quality. In two hybrids, 111 quantitative trait loci (QTL) for fiber quality were detected using composite interval mapping, in which 62 new stable QTL were simultaneously identified in more than one environment or population. QTL detected at the single-locus level mainly showed additive effect. In addition, a total of 286 digenic interactions (E-QTL) and their environmental interactions [QTL × environment interactions (QEs)] were detected for fiber quality traits by inclusive composite interval mapping. QE effects should be considered in molecular marker-assisted selection breeding. On average, the E-QTL explained a larger proportion of the phenotypic variation than the main-effect QTL did. It is concluded that the additive effect of single-locus and epistasis with few detectable main effects play an important role in controlling fiber quality traits in Upland cotton.
    Type of Medium: Online Resource
    ISSN: 2160-1836
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2016
    detail.hit.zdb_id: 2629978-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Plant Cell, Oxford University Press (OUP), Vol. 34, No. 7 ( 2022-07-04), p. 2708-2729
    Abstract: Stomatal opening is largely promoted by light-activated plasma membrane-localized proton ATPases (PM H+-ATPases), while their closure is mainly modulated by abscisic acid (ABA) signaling during drought stress. It is unknown whether PM H+-ATPases participate in ABA-induced stomatal closure. We established that BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) interacts with, phosphorylates and activates the major PM Arabidopsis H+-ATPase isoform 2 (AHA2). Detached leaves from aha2-6 single mutant Arabidopsis thaliana plants lost as much water as bak1-4 single and aha2-6 bak1-4 double mutants, with all three mutants losing more water than the wild-type (Columbia-0 [Col-0]). In agreement with these observations, aha2-6, bak1-4, and aha2-6 bak1-4 mutants were less sensitive to ABA-induced stomatal closure than Col-0, whereas the aha2-6 mutation did not affect ABA-inhibit ed stomatal opening under light conditions. ABA-activated BAK1 phosphorylated AHA2 at Ser-944 in its C-terminus and activated AHA2, leading to rapid H+ efflux, cytoplasmic alkalinization, and reactive oxygen species (ROS) accumulation, to initiate ABA signal transduction and stomatal closure. The phosphorylation-mimicking mutation AHA2S944D driven by its own promoter could largely compensate for the defective phenotypes of water loss, cytoplasmic alkalinization, and ROS accumulation in both aha2-6 and bak1-4 mutants. Our results uncover a crucial role of AHA2 in cytoplasmic alkalinization and ABA-induced stomatal closure during the plant’s response to drought stress.
    Type of Medium: Online Resource
    ISSN: 1040-4651 , 1532-298X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 623171-8
    detail.hit.zdb_id: 2004373-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Pathogens and Disease, Oxford University Press (OUP), Vol. 73, No. 6 ( 2015-08), p. ftv042-
    Type of Medium: Online Resource
    ISSN: 2049-632X , 2049-632X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 2693712-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2016
    In:  G3 Genes|Genomes|Genetics Vol. 6, No. 10 ( 2016-10-01), p. 3373-3379
    In: G3 Genes|Genomes|Genetics, Oxford University Press (OUP), Vol. 6, No. 10 ( 2016-10-01), p. 3373-3379
    Abstract: Plant height, which shows dynamic development and heterosis, is a major trait affecting plant architecture and has an indirect influence on economic yield related to biological yield in cotton. In the present study, we carried out dynamic analysis for plant height and its heterosis by quantitative trait loci (QTL) mapping at multiple developmental stages using two recombinant inbred lines (RILs) and their backcross progeny. At the single-locus level, 47 QTL were identified at five developmental stages in two hybrids. In backcross populations, QTL identified at an early stage mainly showed partial effects and QTL detected at a later stage mostly displayed overdominance effects. At the two-locus level, we found that main effect QTL played a more important role than epistatic QTL in the expression of heterosis in backcross populations. Therefore, this study implies that the genetic basis of plant height heterosis shows dynamic character and main effect QTL with dominance determines heterosis for plant height in Upland cotton.
    Type of Medium: Online Resource
    ISSN: 2160-1836
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2016
    detail.hit.zdb_id: 2629978-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Experimental Botany, Oxford University Press (OUP), Vol. 74, No. 8 ( 2023-04-18), p. 2542-2555
    Abstract: Crown roots are the main components of the fibrous root system in cereal crops and play critical roles in plant adaptation; however, the molecular mechanisms underlying their formation in wheat (Triticum aestivum) have not been fully elucidated. In this study, we identified a wheat basic helix-loop-helix (bHLH) protein, TabHLH123, that interacts with the essential regulator of crown root initiation, MORE ROOT in wheat (TaMOR). TabHLH123 is expressed highly in shoot bases and roots. Ectopic expression of TabHLH123 in rice resulted in more roots compared with the wild type. TabHLH123 regulates the expression of genes controlling crown-root development and auxin metabolism, responses, and transport. In addition, we analysed the nucleotide sequence polymorphisms of TabHLH123s in the wheat genome and identified a superior haplotype, TabHLH123-6B, that is associated with high root dry weight and 1000-grain weight, and short plant height. Our study reveals the role of TabHLH123 in controlling the formation of crown roots and provides beneficial insights for molecular marker-assisted breeding in wheat.
    Type of Medium: Online Resource
    ISSN: 0022-0957 , 1460-2431
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1466717-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  The Plant Cell Vol. 35, No. 10 ( 2023-09-27), p. 3739-3756
    In: The Plant Cell, Oxford University Press (OUP), Vol. 35, No. 10 ( 2023-09-27), p. 3739-3756
    Abstract: The biological function of RNA can be modulated by base modifications. Here, we unveiled the occurrence of N4-acetylation of cytidine in plant RNA, including mRNA, by employing LC-MS/MS and acRIP-seq. We identified 325 acetylated transcripts from the leaves of 4-week-old Arabidopsis (Arabidopsis thaliana) plants and determined that 2 partially redundant N-ACETYLTRANSFERASEs FOR CYTIDINE IN RNA (ACYR1 and ACYR2), which are homologous to mammalian NAT10, are required for acetylating RNA in vivo. A double-null mutant was embryo lethal, while eliminating 3 of the 4 ACYR alleles led to defects in leaf development. These phenotypes could be traced back to the reduced acetylation and concomitant destabilization of the transcript of TOUGH, which is required for miRNA processing. These findings indicate that N4-acetylation of cytidine is a modulator of RNA function with a critical role in plant development and likely many other processes.
    Type of Medium: Online Resource
    ISSN: 1040-4651 , 1532-298X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 623171-8
    detail.hit.zdb_id: 2004373-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Tree Physiology Vol. 43, No. 3 ( 2023-03-09), p. 379-389
    In: Tree Physiology, Oxford University Press (OUP), Vol. 43, No. 3 ( 2023-03-09), p. 379-389
    Abstract: Elevated CO2 and warmer temperature occur simultaneously under the current climate change. However, their combined effects on the photosynthetic traits in boreal trees are not well understood. This study investigated the morphological and photosynthetic responses of yellow birch (Betula alleghaniensis Britt.) to a combined treatment of CO2 and temperature (ambient, ACT (400 μmol mol−1 CO2 and current temperature) vs elevated, ECT (750 μmol mol−1 CO2 and current +4 °C temperature)). It was found that ECT significantly reduced leaf-area based photosynthetic rate (An), maximum Rubisco carboxylation rate (Vcmax), photosynthetic electron transport rate (Jmax), leaf nitrogen concentration, respiration and mesophyll conductance. There were two interesting findings: first, the primary mechanism of photosynthetic limitation shifted from Ribulose-1,5-bisphosphate (RuBP) carboxylation (related to Vcmax) to RuBP regeneration (related to Jmax) in response to ECT, leading to decreased transition point (Ci-t and An-t) from RuBP carboxylation to regeneration; second, the increase in total leaf area in response to ECT more than compensated for the downregulation of leaf-area based photosynthesis, leading to greater biomass in ECT than in ACT. We proposed a new protocol for evaluating photosynthetic limitations by comparing the relative relationship between the transition point (Ci-t and An-t) and the photosynthetic rate at growth CO2 (Ci-g and An-g). Furthermore, we found that Jmax (RuBP regeneration) was the primary limitation to An under ECT.
    Type of Medium: Online Resource
    ISSN: 1758-4469
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1473475-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nutrition Reviews, Oxford University Press (OUP), Vol. 80, No. 2 ( 2022-01-10), p. 165-177
    Abstract: Nondigestible fermentable carbohydrates (NDFCs) can be fermented by microbiota, thereby yielding metabolites that have a beneficial role in the prevention and treatment of obesity and its complications. However, to our knowledge, no meta-analysis has been conducted to evaluate the effects of NDFCs on obesity. Objective To conduct a meta-analysis of randomized controlled trials (RCTs) to summarize existing evidence on the effects of numerous NDFCs on adiposity and cardiovascular risk factors in adults with overweight or obesity with ≥2 weeks of follow-up. Data Sources The following databases were searched: MEDLINE, Embase, and CINAHL. Data Extraction Seventy-seven RCTs with 4535 participants were identified for meta-analysis from the 3 databases. Data Analysis The findings suggest that increased intake of NDFCs is significantly effective in reducing body mass index by 0.280 kg/m2, weight by 0.501 kg, hip circumference by 0.554 cm, waist circumference by 0.649 cm, systolic blood pressure by 1.725 mmHg, total cholesterol by 0.36 mmol/L, and low-density lipoprotein by 0.385 mmol/L, with evidence of moderate-to-high quality. Conclusion Convincing evidence from meta-analyses of RCTs indicates that increased NDFC intake improves adiposity, blood lipid levels, and systolic blood pressure in people with overweight and obesity.
    Type of Medium: Online Resource
    ISSN: 0029-6643 , 1753-4887
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2066844-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Applied Microbiology, Oxford University Press (OUP), Vol. 133, No. 5 ( 2022-11-01), p. 2979-2992
    Abstract: This study aimed to isolate and identify entomopathogenic fungi (EPF) from fungus-infected Ostrinia furnacalis larvae, screen their bio-efficacy against O. furnacalis, and select the most suitable virulent native EPF for biocontrol agent development. Methods and Results The occurrence of EPF isolated from various maize production regions in Xinjiang was investigated. Of 13,864 O. furnacalis cadavers surveyed, 536 were selected, and of 136 fungal specimens collected, 14 species were identified. Four fungal isolates were highly pathogenic to O. furnacalis: Aspergillus sp., Lecanicillium attenuatum, Beauveria bassiana and Penicillium polonicum. The Aspergillus sp. was the most abundant (42.25% distribution frequency). Bioassay results revealed that it was as pathogenic as B. bassiana (positive control), with 96.58% lethality against O. furnacalis (LC50: 1.40 × 104 conidia ml−1, LT50: 3.41 days). Through morphological examination and rDNA-benA and rDNA-CaM homogeneity analyses, the isolate was identified as Aspergillus nomius. Conclusions Four EPF species were highly pathogenic, with A. nomius being the most prevalent in Xinjiang. A. nomius is a potential biocontrol agent. Significance and Impact of Study For sustainable prevention and control of O. furnacalis infestation, identifying biocontrol agents with high virulence against O. furnacalis is crucial. The findings of this study support the development of EPF-based biocontrol approaches.
    Type of Medium: Online Resource
    ISSN: 1365-2672 , 1364-5072
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2020421-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Laboratory Medicine, Oxford University Press (OUP), Vol. 53, No. 4 ( 2022-07-04), p. 360-368
    Abstract: Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) frequently coexist and can act synergistically to drive adverse outcomes of one another. This study aimed to unravel the metabolomic changes in patients with NAFLD and T2DM, to identify potential noninvasive biomarkers, and to provide insights for understanding the link between NAFLD and T2DM. Methods Three hundred participants aged 35 to 70 years who were diagnosed with NAFLD (n = 100), T2DM (n = 100), or a comorbidity of NAFLD and T2DM (n = 100) were included in this study. Anthropometrics and routine blood chemistry were assessed after overnight fast. The global serum metabolomic analysis was performed by ultra-performance liquid chromatography-Orbitrap mass spectrometry. Multivariate data analysis methods were utilized to identify the potential biomarkers. Results A set of serum biomarkers that could effectively separate NAFLD from NAFLD + T2DM and T2DM from NAFLD + T2DM were identified. We found that patients with coexisting NAFLD and T2DM had significantly higher levels of total protein (TP), triglycerides (TG), glucose in urine, and gamma-hydroxybutyric acid than those with NAFLD and had significant increased levels of TP, albumin, alanine aminotransferase, aspartate aminotransferase, total cholesterol, cholinesterase, TG, low-density lipoprotein, and apolipoprotein A when compared to patients with T2DM. Conclusion The metabolomics results provide evidence that the comorbidity of NAFLD and T2DM considerably altered patients’ metabolomics patterns compared to those of patients with only NAFLD or T2DM.
    Type of Medium: Online Resource
    ISSN: 0007-5027 , 1943-7730
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2100869-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...