GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (34)
Material
Publisher
  • Oxford University Press (OUP)  (34)
Language
Subjects(RVK)
  • 1
    In: Protein & Cell, Oxford University Press (OUP), Vol. 6, No. 2 ( 2015-2), p. 152-156
    Type of Medium: Online Resource
    ISSN: 1674-800X , 1674-8018
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 2543451-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Chemistry, Oxford University Press (OUP), Vol. 66, No. 2 ( 2020-02-01), p. 342-351
    Abstract: Dysregulation of N6-methyladenosine (m6A) is associated with various human diseases including cancer. This study aimed to evaluate the level of m6A as a biomarker for gastric cancer (GC) diagnosis. Methods Peripheral blood samples were collected from 100 GC patients, 30 benign gastric disease (BGD) patients, and 75 healthy controls (HCs). Levels of m6A in total RNA and expression of m6A-related proteins were analyzed. Results The m6A levels in peripheral blood RNA were significantly increased in the GC group compared with those in the BGD or HC groups; moreover, levels increased with the progression and metastasis of GC and decreased in GC patients after surgery. The area under the curve (AUC) for m6A in the GC group was 0.929 (95% CI, 0.88–0.96), which is markedly greater than the AUCs for carcinoembryonic antigen (CEA; 0.694) and carbohydrate antigen 199 (CA199; 0.603). The combination of CEA and CA199 with m6A improved the AUC to 0.955 (95% CI, 0.91–0.98). The expressions of m6A demethylases ALKBH5 and FTO were significantly downregulated in the GC group compared with the HC group. Coculture with GC cells increased the m6A of RNA in promyelocytic (HL-60) and monocytic (THP-1) leukemia cells and nontumorigenic human peripheral blood B lymphocyte cells (PENG-EBV). Furthermore, a xenograft model enhanced the m6A in peripheral blood RNA of mice. Accordingly, expressions of ALKBH5 and FTO were decreased both in vitro and in vivo. Conclusions Level of m6A in peripheral blood RNA is a promising noninvasive diagnostic biomarker for GC patients.
    Type of Medium: Online Resource
    ISSN: 0009-9147 , 1530-8561
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Briefings in Bioinformatics, Oxford University Press (OUP), Vol. 23, No. 2 ( 2022-03-10)
    Abstract: The lack of a reliable and easy-to-operate screening pipeline for disease-related noncoding RNA regulatory axis is a problem that needs to be solved urgently. To address this, we designed a hybrid pipeline, disease-related lncRNA–miRNA–mRNA regulatory axis prediction from multiomics (DLRAPom), to identify risk biomarkers and disease-related lncRNA–miRNA–mRNA regulatory axes by adding a novel machine learning model on the basis of conventional analysis and combining experimental validation. The pipeline consists of four parts, including selecting hub biomarkers by conventional bioinformatics analysis, discovering the most essential protein-coding biomarkers by a novel machine learning model, extracting the key lncRNA–miRNA–mRNA axis and validating experimentally. Our study is the first one to propose a new pipeline predicting the interactions between lncRNA and miRNA and mRNA by combining WGCNA and XGBoost. Compared with the methods reported previously, we developed an Optimized XGBoost model to reduce the degree of overfitting in multiomics data, thereby improving the generalization ability of the overall model for the integrated analysis of multiomics data. With applications to gestational diabetes mellitus (GDM), we predicted nine risk protein-coding biomarkers and some potential lncRNA–miRNA–mRNA regulatory axes, which all correlated with GDM. In those regulatory axes, the MALAT1/hsa-miR-144-3p/IRS1 axis was predicted to be the key axis and was identified as being associated with GDM for the first time. In short, as a flexible pipeline, DLRAPom can contribute to molecular pathogenesis research of diseases, effectively predicting potential disease-related noncoding RNA regulatory networks and providing promising candidates for functional research on disease pathogenesis.
    Type of Medium: Online Resource
    ISSN: 1467-5463 , 1477-4054
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2036055-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  National Science Review Vol. 10, No. 7 ( 2023-05-31)
    In: National Science Review, Oxford University Press (OUP), Vol. 10, No. 7 ( 2023-05-31)
    Abstract: Inspired by the concept of superscattering in optics, we for the first time theoretically predict and experimentally demonstrate the superscattering phenomenon in water waves. The subwavelength superscatterer is constructed by multi-layered concentric cylinders with an inhomogeneous depth profile. The superscatterer breaks the long-held single-channel scattering limit by several times and thus significantly enhances the total scattering strength. The underlying mechanism originates from the near degeneracy of the resonances of multiple channels. We fabricate the superscatterer prototype and experimentally measure the near-field patterns, which are consistent with theoretical prediction and numerical simulation. Our study opens a new avenue to strengthen water-wave scattering and deepen the understanding in water waves, which can be useful for ocean energy harvesting and harbor protection.
    Type of Medium: Online Resource
    ISSN: 2095-5138 , 2053-714X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2745465-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Plant Physiology, Oxford University Press (OUP), Vol. 190, No. 1 ( 2022-08-29), p. 843-859
    Abstract:  Sodium (Na+) and potassium (K+) homeostasis is essential for plant survival in saline soils. A member of the High-Affinity K+ Transporter (HKT) family in rice (Oryza sativa), OsHKT1;1, is a vital regulator of Na+ exclusion from shoots and is bound by a MYB transcription factor (OsMYBc). Here, we generated transgenic rice lines in the oshkt1;1 mutant background for genetic complementation using genomic OsHKT1;1 containing a native (Com) or mutated (mCom) promoter that cannot be bound by OsMYBc. In contrast to wild-type (WT) or Com lines, the mCom lines were not able to recover the salt-sensitive phenotype of oshkt1;1. The OsMYBc-overexpressing plants were more tolerant to salt stress than WT plants. A yeast two-hybrid screen using the OsMYBc N-terminus as bait identified a rice MYBc stress-related RING finger protein (OsMSRFP). OsMSRFP is an active E3 ligase that ubiquitinated OsMYBc in vitro and mediated 26S proteasome-mediated degradation of OsMYBc under semi-in vitro and in vivo conditions. OsMSRFP attenuated OsMYBc-mediated OsHKT1;1 expression, and knockout of OsMSRFP led to rice salt tolerance. These findings uncover a regulatory mechanism of salt response that fine-tunes OsHKT1;1 transcription by ubiquitination of OsMYBc.
    Type of Medium: Online Resource
    ISSN: 0032-0889 , 1532-2548
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Horticulture Research, Oxford University Press (OUP), Vol. 9 ( 2022-01-05)
    Abstract: Cissus is the largest genus in Vitaceae and is mainly distributed in the tropics and subtropics. Crassulacean acid metabolism (CAM), a photosynthetic adaptation to the occurrence of succulent leaves or stems, indicates that convergent evolution occurred in response to drought stress during species radiation. Here we provide the chromosomal level assembly of Cissus rotundifolia (an endemic species in Eastern Africa) and a genome-wide comparison with grape to understand genome divergence within an ancient eudicot family. Extensive transcriptome data were produced to illustrate the genetics underpinning C. rotundifolia’s ecological adaption to seasonal aridity. The modern karyotype and smaller genome of C. rotundifolia (n = 12, 350.69 Mb/1C), which lack further whole-genome duplication, were mainly derived from gross chromosomal rearrangements such as fusions and segmental duplications, and were sculpted by a very recent burst of retrotransposon activity. Bias in local gene amplification contributed to its remarkable functional divergence from grape, and the specific proliferated genes associated with abiotic and biotic responses (e.g. HSP-20, NBS-LRR) enabled C. rotundifolia to survive in a hostile environment. Reorganization of existing enzymes of CAM characterized as diurnal expression patterns of relevant genes further confer the ability to thrive in dry savannas.
    Type of Medium: Online Resource
    ISSN: 2052-7276
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2781828-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Experimental Botany, Oxford University Press (OUP), Vol. 74, No. 17 ( 2023-09-13), p. 4978-4993
    Abstract: Brassinosteroids (BRs) are a class of polyhydroxylated steroidal phytohormones that are essential for plant growth and development. Rice BRASSINOSTEROID-INSENSITIVE1 (BRI1)-ASSOCIATED RECEPTOR KINASES (OsBAKs) are plasma membrane-localized receptor kinases belonging to the subfamily of leucine-rich repeat receptor kinases. It has been found that in Arabidopsis, BRs induce the formation of a BRI1–BAK1 heterodimer complex and transmit the cascade signal to BRASSINAZOLE RESISTANT1/bri1-EMS-SUPPRESSOR1 (BZR1/BES1) to regulate BR signaling. Here, in rice (Oryza sativa ssp. japonica), we found that OsBZR1 binds directly to the promoter of OsBAK2, but not OsBAK1, and represses the expression of OsBAK2 to form a BR feedback inhibition loop. Additionally, the phosphorylation of OsBZR1 by OsGSK3 reduced its binding to the OsBAK2 promoter. The osbak2 mutant displays a typical BR-deficiency phenotype and negative modulates the accumulation of OsBZR1. Interestingly, the grain length of the osbak2 mutant was increased whereas in the cr-osbak2/cr-osbzr1 double mutant, the reduced grain length of the cr-osbzr1 mutant was restored, implying that the increased grain length of osbak2 may be due to the rice somatic embryogenesis receptor kinase-dependent pathway. Our study reveals a novel mechanism by which OsBAK2 and OsBZR1 engage in a negative feedback loop to maintain rice BR homeostasis, facilitating a deeper understanding of the BR signaling network and grain length regulation in rice.
    Type of Medium: Online Resource
    ISSN: 0022-0957 , 1460-2431
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1466717-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Plant Physiology, Oxford University Press (OUP), Vol. 188, No. 1 ( 2022-01-20), p. 624-636
    Abstract: Brassinosteroids (BRs) play essential roles in regulating plant growth and development, however, gaps still remain in our understanding of the BR signaling network. We previously cloned a grain length quantitative trait locus qGL3, encoding a rice (Oryza sativa L.) protein phosphatase with Kelch-like repeat domain (OsPPKL1), that negatively regulates grain length and BR signaling. To further explore the BR signaling network, we performed phosphoproteomic analysis to screen qGL3-regulated downstream components. We selected a 14-3-3 protein OsGF14b from the phosphoproteomic data for further analysis. qGL3 promoted the phosphorylation of OsGF14b and induced the interaction intensity between OsGF14b and OsBZR1. In addition, phosphorylation of OsGF14b played an important role in regulating nucleocytoplasmic shuttling of OsBZR1. The serine acids (Ser258Ser259) residues of OsGF14b play an essential role in BR-mediated responses and plant development. Genetic and molecular analyses indicated that OsGF14b functions as a negative regulator in BR signaling and represses the transcriptional activation activity of OsBZR1. Collectively, these results demonstrate that qGL3 induces the phosphorylation of OsGF14b, which modulates nucleocytoplasmic shuttling and transcriptional activation activity of OsBZR1, to eventually negatively regulate BR signaling and grain length in rice.
    Type of Medium: Online Resource
    ISSN: 0032-0889 , 1532-2548
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: The Journal of Infectious Diseases, Oxford University Press (OUP), Vol. 217, No. 11 ( 2018-05-05), p. 1708-1717
    Type of Medium: Online Resource
    ISSN: 0022-1899 , 1537-6613
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 1473843-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Rheumatology, Oxford University Press (OUP), Vol. 63, No. 3 ( 2024-03-01), p. 689-697
    Abstract: The relationship between smoking and RA has been confirmed. Most nations have ratified the Framework Convention on Tobacco Control. However, there are considerable regional differences in how effectively tobacco control measures were implemented. This study was carried out to estimate the spatiotemporal trends of smoking-related RA burdens. Methods Data were available from the Global Burden of Disease Study 2019 and were analysed by age, sex, year and region. Joinpoint regression analysis was applied to the analysis of temporal trends in the RA burden resulting from smoking over 30 years. Results From 1990 to 2019, the number of global RA cases increased each year. The age-standardized prevalence, death and disability-adjusted life-year (DALY) rates also increased. However, there was a wave in the changing trend of the age-standardized death rate, with the lowest point in 2012 and the highest point in 1990. Smoking, in particular, was responsible for 11.9% of total RA deaths and 12.8% of total DALYs in 1990 but only 8.5% of total RA deaths and 9.6% of total DALYs in 2019. A greater burden from smoking exposure was borne by men, older adults and people living in high-middle and high sociodemographic index (SDI) countries and regions. Moreover, the UK demonstrated the highest reduction in age-standardized death and DALY rates over the three decades. Conclusion There were reductions in the age-standardized burdens of RA caused by smoking worldwide. Nevertheless, this continues to be an issue in some areas, and efforts to reduce smoking should be made to lessen this growing burden.
    Type of Medium: Online Resource
    ISSN: 1462-0324 , 1462-0332
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2024
    detail.hit.zdb_id: 1474143-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...