GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (2)
  • 1
    In: Progress of Theoretical and Experimental Physics, Oxford University Press (OUP), Vol. 2021, No. 5 ( 2021-05-18)
    Abstract: The Laser Interferometer Gravitational-wave Observatory Scientific Collaboration and Virgo Collaboration (LVC) sent out 56 gravitational-wave (GW) notices during the third observing run (O3). The Japanese Collaboration for Gravitational wave ElectroMagnetic follow-up (J-GEM) performed optical and near-infrared observations to identify and observe an electromagnetic (EM) counterpart. We constructed a web-based system that enabled us to obtain and share information on candidate host galaxies for the counterpart, and the status of our observations. Candidate host galaxies were selected from the GLADE catalog with a weight based on the 3D GW localization map provided by LVC. We conducted galaxy-targeted and wide-field blind surveys, real-time data analysis, and visual inspection of observed galaxies. We performed galaxy-targeted follow-ups to 23 GW events during O3, and the maximum probability covered by our observations reached 9.8$\%$. Among these, we successfully started observations for 10 GW events within 0.5 days after the detection. This result demonstrates that our follow-up observation has the potential to constrain EM radiation models for a merger of binary neutron stars at a distance of up to $\sim$100 Mpc with a probability area of $\leq$ 500 deg$^2$.
    Type of Medium: Online Resource
    ISSN: 2050-3911
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2705045-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Publications of the Astronomical Society of Japan, Oxford University Press (OUP), Vol. 73, No. 5 ( 2021-10-04), p. 1209-1224
    Abstract: We report photometric and spectroscopic observations of the eclipsing SU UMa-type dwarf nova ASASSN-18aan. We observed the 2018 superoutburst with 2.3 mag brightening and found the orbital period (Porb) to be 0.149454(3) d, or 3.59 hr. This is longward of the period gap, establishing ASASSN-18aan as one of a small number of long-Porb SU UMa-type dwarf novae. The estimated mass ratio, [q = M2/M1 = 0.278(1)], is almost identical to the upper limit of tidal instability by the 3 : 1 resonance. From eclipses, we found that the accretion disk at the onset of the superoutburst may reach the 3 : 1 resonance radius, suggesting that the superoutburst of ASASSN-18aan results from the tidal instability. Considering the case of long-Porb WZ Sge-type dwarf novae, we suggest that the tidal dissipation at the tidal truncation radius is enough to induce SU UMa-like behavior in relatively high-q systems such as SU UMa-type dwarf novae, but that this is no longer effective in low-q systems such as WZ Sge-type dwarf novae. The unusual nature of the system extends to the secondary star, for which we find a spectral type of G9, much earlier than typical for the orbital period, and a secondary mass M2 of around 0.18 M⊙, smaller than expected for the orbital period and the secondary’s spectral type. We also see indications of enhanced sodium abundance in the secondary’s spectrum. Anomalously hot secondaries are seen in a modest number of other CVs and related objects. These systems evidently underwent significant nuclear evolution before the onset of mass transfer. In the case of ASASSN-18aan, this apparently resulted in a mass ratio lower than typically found at the system’s Porb, which may account for the occurrence of a superoutburst at this relatively long period.
    Type of Medium: Online Resource
    ISSN: 0004-6264 , 2053-051X
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2206640-8
    detail.hit.zdb_id: 2083084-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...