GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (3)
  • 1
    In: Genome Biology and Evolution, Oxford University Press (OUP), Vol. 13, No. 2 ( 2021-02-03)
    Abstract: Photosynthetic dinoflagellates of the Family Symbiodiniaceae live symbiotically with many organisms that inhabit coral reefs and are currently classified into fifteen groups, including seven genera. Draft genomes from four genera, Symbiodinium, Breviolum, Fugacium, and Cladocopium, which have been isolated from corals, have been reported. However, no genome is available from the genus Durusdinium, which occupies an intermediate phylogenetic position in the Family Symbiodiniaceae and is well known for thermal tolerance (resistance to bleaching). We sequenced, assembled, and annotated the genome of Durusdinium trenchii, isolated from the coral, Favia speciosa, in Okinawa, Japan. Assembled short reads amounted to 670 Mb with ∼47% GC content. This GC content was intermediate among taxa belonging to the Symbiodiniaceae. Approximately 30,000 protein-coding genes were predicted in the D. trenchii genome, fewer than in other genomes from the Symbiodiniaceae. However, annotations revealed that the D. trenchii genome encodes a cluster of genes for synthesis of mycosporine-like amino acids, which absorb UV radiation. Interestingly, a neighboring gene in the cluster encodes a glucose–methanol–choline oxidoreductase with a flavin adenine dinucleotide domain that is also found in Symbiodinium tridacnidorum. This conservation seems to partially clarify an ancestral genomic structure in the Symbiodiniaceae and its loss in late-branching lineages, including Breviolum and Cladocopium, after splitting from the Durusdinium lineage. Our analysis suggests that approximately half of the taxa in the Symbiodiniaceae may maintain the ability to synthesize mycosporine-like amino acids. Thus, this work provides a significant genomic resource for understanding the genomic diversity of Symbiodiniaceae in corals.
    Type of Medium: Online Resource
    ISSN: 1759-6653
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2495328-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Genome Biology and Evolution, Oxford University Press (OUP), Vol. 13, No. 1 ( 2021-01-07)
    Abstract: Reef-building corals and photosynthetic, endosymbiotic algae of the family Symbiodiniaceae establish mutualistic relationships that are fundamental to coral biology, enabling coral reefs to support a vast diversity of marine species. Although numerous types of Symbiodiniaceae occur in coral reef environments, Acropora corals select specific types in early life stages. In order to study molecular mechanisms of coral–algal symbioses occurring in nature, we performed whole-genome transcriptomic analyses of Acropora tenuis larvae inoculated with Symbiodinium microadriaticum strains isolated from an Acropora recruit. In order to identify genes specifically involved in symbioses with native symbionts in early life stages, we also investigated transcriptomic responses of Acropora larvae exposed to closely related, nonsymbiotic, and occasionally symbiotic Symbiodinium strains. We found that the number of differentially expressed genes was largest when larvae acquired native symbionts. Repertoires of differentially expressed genes indicated that corals reduced amino acid, sugar, and lipid metabolism, such that metabolic enzymes performing these functions were derived primarily from S. microadriaticum rather than from A. tenuis. Upregulated gene expression of transporters for those metabolites occurred only when coral larvae acquired their natural symbionts, suggesting active utilization of native symbionts by host corals. We also discovered that in Acropora, genes for sugar and amino acid transporters, prosaposin-like, and Notch ligand-like, were upregulated only in response to native symbionts, and included tandemly duplicated genes. Gene duplications in coral genomes may have been essential to establish genomic novelties for coral–algae symbiosis.
    Type of Medium: Online Resource
    ISSN: 1759-6653
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2495328-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Genome Biology and Evolution, Oxford University Press (OUP), Vol. 13, No. 12 ( 2021-12-01)
    Abstract: Massive corals of the genus Porites, common, keystone reef builders in the Indo-Pacific Ocean, are distinguished by their relative stress tolerance and longevity. In order to identify genetic bases of these attributes, we sequenced the complete genome of a massive coral, Porites australiensis. We developed a genome assembly and gene models of comparable quality to those of other coral genomes. Proteome analysis identified 60 Porites skeletal matrix protein genes, all of which show significant similarities to genes from other corals and even to those from a sea anemone, which has no skeleton. Nonetheless, 30% of its skeletal matrix proteins were unique to Porites and were not present in the skeletons of other corals. Comparative genomic analyses showed that genes widely conserved among other organisms are selectively expanded in Porites. Specifically, comparisons of transcriptomic responses of P. australiensis and Acropora digitifera, a stress-sensitive coral, reveal significant differences in regard to genes that respond to increased water temperature, and some of the genes expanded exclusively in Porites may account for the different thermal tolerances of these corals. Taken together, widely shared genes may have given rise to unique biological characteristics of Porites, massive skeletons and stress tolerance.
    Type of Medium: Online Resource
    ISSN: 1759-6653
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2495328-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...