GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (2)
Material
Publisher
  • Oxford University Press (OUP)  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Monthly Notices of the Royal Astronomical Society Vol. 508, No. 3 ( 2021-10-22), p. 4096-4105
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 508, No. 3 ( 2021-10-22), p. 4096-4105
    Abstract: The vertical profiles of wind speed and the optical turbulence are critical to the design and operation of a new generation of highly sophisticated astronomical telescopes and adaptive optics instrumentation. We present the first study of the temporal evolution behaviours and probability distributions of wind speed [V(h) profiles, as well as the 200 hPa pressure level wind speed, V200] and optical turbulence [$C_n^2(h)$ profiles, and the most relevant integrated astronomical parameters derived from $C_n^2(h)$ profiles, i.e. the seeing ε, the isoplanatic angle θAO, the wavefront coherence time τAO, the average velocity of turbulence VAO, and the seeing layer height hAO] above the Dachaidan site of the Tibetan Plateau. The field campaigns of wind speed and optical turbulence were collected using the balloon-borne microthermal measurement system. From the whole field campaigns, the results are remarkable: The median VAO is 21.1 m s−1, the median V200 is 32.5 m s−1, the median hAO is 7566 m, the median ε is 1.04 arcsec (below 1.00 arcsec 52 per cent of the time), the median θAO is 0.74 arcsec, and the median τAO is 1.33 ms; these conditions are comparable to some of the best astronomical observatories in the world. In particular, the linear relationship of average velocity and 200 hPa level wind at this site is VAO = 0.627V200. In this study, we flag the temporal evolution and probability distribution feature of wind speed, optical turbulence profile, and the relevant integrated astronomical parameters for astronomical applications.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Horticulture Research, Oxford University Press (OUP), Vol. 8, No. 1 ( 2021-12)
    Abstract: Leaf veins play an important role in plant growth and development, and the bundle sheath (BS) is believed to greatly improve the photosynthetic efficiency of C 4 plants. The OBV mutation in tomato ( Solanum lycopersicum ) results in dark veins and has been used widely in processing tomato varieties. However, physiological performance has difficulty explaining fitness in production. In this study, we confirmed that this mutation was caused by both the increased chlorophyll content and the absence of bundle sheath extension (BSE) in the veins. Using genome-wide association analysis and map-based cloning, we revealed that OBV encoded a C 2 H 2 L domain class transcription factor. It was localized in the nucleus and presented cell type-specific gene expression in the leaf veins. Furthermore, we verified the gene function by generating CRISPR/Cas9 knockout and overexpression mutants of the tomato gene. RNA sequencing analysis revealed that OBV was involved in regulating chloroplast development and photosynthesis, which greatly supported the change in chlorophyll content by mutation. Taken together, these findings demonstrated that OBV affected the growth and development of tomato by regulating chloroplast development in leaf veins. This study also provides a solid foundation to further decipher the mechanism of BSEs and to understand the evolution of photosynthesis in land plants.
    Type of Medium: Online Resource
    ISSN: 2662-6810 , 2052-7276
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2781828-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...