GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (1)
Material
Publisher
  • Oxford University Press (OUP)  (1)
Language
Years
  • 1
    In: Bioinformatics, Oxford University Press (OUP), Vol. 34, No. 21 ( 2018-11-01), p. 3609-3615
    Abstract: Molecular analyses suggest that myeloma is composed of distinct sub-types that have different molecular pathologies and various response rates to certain treatments. Drug responses in multiple myeloma (MM) are usually recorded as a multi-level ordinal outcome. One of the goals of drug response studies is to predict which response category any patients belong to with high probability based on their clinical and molecular features. However, as most of genes have small effects, gene-based models may provide limited predictive accuracy. In that case, methods for predicting multi-level ordinal drug responses by incorporating biological pathways are desired but have not been developed yet. Results We propose a pathway-structured method for predicting multi-level ordinal responses using a two-stage approach. We first develop hierarchical ordinal logistic models and an efficient quasi-Newton algorithm for jointly analyzing numerous correlated variables. Our two-stage approach first obtains the linear predictor (called the pathway score) for each pathway by fitting all predictors within each pathway using the hierarchical ordinal logistic approach, and then combines the pathway scores as new predictors to build a predictive model. We applied the proposed method to two publicly available datasets for predicting multi-level ordinal drug responses in MM using large-scale gene expression data and pathway information. Our results show that our approach not only significantly improved the predictive performance compared with the corresponding gene-based model but also allowed us to identify biologically relevant pathways. Availability and implementation The proposed approach has been implemented in our R package BhGLM, which is freely available from the public GitHub repository https://github.com/abbyyan3/BhGLM.
    Type of Medium: Online Resource
    ISSN: 1367-4803 , 1367-4811
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...