GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (5)
Material
Publisher
  • Oxford University Press (OUP)  (5)
Language
Years
  • 1
    In: Genomics, Proteomics & Bioinformatics, Oxford University Press (OUP), Vol. 21, No. 1 ( 2023-02-01), p. 203-215
    Abstract: Sika deer are known to prefer oak leaves, which are rich in tannins and toxic to most mammals; however, the genetic mechanisms underlying their unique ability to adapt to living in the jungle are still unclear. In identifying the mechanism responsible for the tolerance of a highly toxic diet, we have made a major advancement by explaining the genome of sika deer. We generated the first high-quality, chromosome-level genome assembly of sika deer and measured the correlation between tannin intake and RNA expression in 15 tissues through 180 experiments. Comparative genome analyses showed that the UGT and CYP gene families are functionally involved in the adaptation of sika deer to high-tannin food, especially the expansion of the UGT family 2 subfamily B of UGT genes. The first chromosome-level assembly and genetic characterization of the tolerance to a highly toxic diet suggest that the sika deer genome may serve as an essential resource for understanding evolutionary events and tannin adaptation. Our study provides a paradigm of comparative expressive genomics that can be applied to the study of unique biological features in non-model animals.
    Type of Medium: Online Resource
    ISSN: 1672-0229 , 2210-3244
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2233708-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Molecular Biology and Evolution Vol. 38, No. 8 ( 2021-07-29), p. 3294-3307
    In: Molecular Biology and Evolution, Oxford University Press (OUP), Vol. 38, No. 8 ( 2021-07-29), p. 3294-3307
    Abstract: The activity of a gene newly integrated into a chromosome depends on the genomic context of the integration site. This “position effect” has been widely reported, although the other side of the coin, that is, how integration affects the local chromosomal environment, has remained largely unexplored, as have the mechanism and phenotypic consequences of this “externality” of the position effect. Here, we examined the transcriptome profiles of approximately 250 Saccharomyces cerevisiae strains, each with GFP integrated into a different locus of the wild-type strain. We found that in genomic regions enriched in essential genes, GFP expression tended to be lower, and the genes near the integration site tended to show greater expression reduction. Further joint analysis with public genome-wide histone modification profiles indicated that this effect was associated with H3K4me2. More importantly, we found that changes in the expression of neighboring genes, but not GFP expression, significantly altered the cellular growth rate. As a result, genomic loci that showed high GFP expression immediately after integration were associated with growth disadvantages caused by elevated expression of neighboring genes, ultimately leading to a low total yield of GFP in the long run. Our results were consistent with competition for transcriptional resources among neighboring genes and revealed a previously unappreciated facet of position effects. This study highlights the impact of position effects on the fate of exogenous gene integration and has significant implications for biological engineering and the pathology of viral integration into the host genome.
    Type of Medium: Online Resource
    ISSN: 1537-1719
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2024221-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Cerebral Cortex Vol. 33, No. 4 ( 2023-02-07), p. 1119-1129
    In: Cerebral Cortex, Oxford University Press (OUP), Vol. 33, No. 4 ( 2023-02-07), p. 1119-1129
    Abstract: The amplitude of low-frequency fluctuation (ALFF) describes the regional intensity of spontaneous blood-oxygen-level-dependent signal in resting-state functional magnetic resonance imaging (fMRI). How the fMRI–ALFF relates to the amplitude in electrophysiological signals remains unclear. We here aimed to investigate the neural correlates of fMRI–ALFF by comparing the spatial difference of amplitude between the eyes-closed (EC) and eyes-open (EO) states from fMRI and magnetoencephalography (MEG), respectively. By synthesizing MEG signal into amplitude-based envelope time course, we first investigated 2 types of amplitude in MEG, meaning the amplitude of neural activities from delta to gamma (i.e. MEG–amplitude) and the amplitude of their low-frequency modulation at the fMRI range (i.e. MEG–ALFF). We observed that the MEG–ALFF in EC was increased at parietal sensors, ranging from alpha to beta; whereas the MEG–amplitude in EC was increased at the occipital sensors in alpha. Source-level analysis revealed that the increased MEG–ALFF in the sensorimotor cortex overlapped with the most reliable EC–EO differences observed in fMRI at slow-3 (0.073–0.198 Hz), and these differences were more significant after global mean standardization. Taken together, our results support that (i) the amplitude at 2 timescales in MEG reflect distinct physiological information and that (ii) the fMRI–ALFF may relate to the ALFF in neural activity.
    Type of Medium: Online Resource
    ISSN: 1047-3211 , 1460-2199
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1483485-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Regenerative Biomaterials, Oxford University Press (OUP), Vol. 8, No. 6 ( 2021-09-02)
    Abstract: Primary malignant bone tumors can be life-threatening. Surgical resection of tumor plus chemotherapy is the standard clinical treatment. However, postoperative recovery is hindered due to tumor recurrence caused by residual tumor cells and bone defect caused by resection of tumor tissue. Herein, a multifunctional mussel-inspired film was fabricated on Mg alloy, that is, an inner hydrothermal-treated layer, a middle layer of polydopamine, and an outer layer of doxorubicin. The modified Mg alloy showed excellent photothermal effect and thermal/pH-controlled release of doxorubicin. The synergistic effect of chemotherapy and photothermal therapy enabled the modified Mg alloy to kill bone tumor in vitro and inhibit tumor growth in nude mice. Moreover, because of the controlled release of Mg ions and biocompatibility of polydopamine, the modified Mg alloy supported extracellular matrix mineralization, alkaline phosphatase activity, and bone-related gene expression in C3H10T1/2. Bone implantation model in rats verified that the modified Mg showed excellent osteointegration. These findings prove that the use of mussel-inspired multifunction film on Mg alloy offers a promising strategy for the therapy of primary malignant bone tumor.
    Type of Medium: Online Resource
    ISSN: 2056-3418 , 2056-3426
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2799042-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Bioinformatics Advances Vol. 3, No. 1 ( 2023-01-05)
    In: Bioinformatics Advances, Oxford University Press (OUP), Vol. 3, No. 1 ( 2023-01-05)
    Abstract: High-resolution target pathogen detection using metagenomic sequencing data represents a major challenge due to the low concentration of target pathogens in samples. We introduced mStrain, a novel Yesinia pestis strain/lineage-level identification tool that utilizes metagenomic data. mStrain successfully identified Y. pestis at the strain/lineage level by extracting sufficient information regarding single-nucleotide polymorphisms (SNPs), which can therefore be an effective tool for identification and source tracking of Y. pestis based on metagenomic data during a plague outbreak. Definition   Strain-level identification Assigning the reads in the metagenomic sequencing data to an exactly known or most closely representative Y. pestis strain. Lineage-level identification Assigning the reads in the metagenomic sequencing data to a specific lineage on the phylogenetic tree. canoSNPs The unique and typical SNPs present in all representative strains. Ancestor/derived state An SNP is defined as the ancestor state when consistent with the allele of Yersinia pseudotuberculosis strain IP32953; otherwise, the SNP is defined as the derived state. Availability and implementation The code for running mStrain, the test dataset, and instructions for running the code can be found at the following GitHub repository: https://github.com/xwqian1123/mStrain.
    Type of Medium: Online Resource
    ISSN: 2635-0041
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 3076075-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...