GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (35)
  • 1
    In: Stem Cells, Oxford University Press (OUP), Vol. 28, No. 9 ( 2010-09-01), p. 1476-1486
    Abstract: Zeta-chain-associated protein kinase-70 (Zap70), a Syk family tyrosine kinase, has been reported to be present exclusively in normal T-cells, natural killer cells, and B cells, serving as a pivotal regulator of antigen-mediated receptor signaling and development. In this study, we report that Zap70 is expressed in undifferentiated mouse embryonic stem cells (mESCs) and may critically regulate self-renewal and pluripotency in mESCs. We found that Zap70 knocked-down mESCs (Zap70KD) show sustained self-renewal and defective differentiation. In addition, we present evidence that the sustained self-renewal in Zap70KD is associated with enhanced Jak/Stat3 signaling and c-Myc induction. These altered signaling appears to result from upregulated leukemia inhibitory factor receptor and downregulated src homology region 2 domain containing phosphatase 1 (SHP-1) phosphatase activity. On the basis of these results, we propose that in undifferentiated mESCs, Zap70 plays important roles in modulating the balance between self-renewal capacity and pluripotent differentiation ability as a key regulator of the Jak/Stat3/c-Myc signaling pathway.
    Type of Medium: Online Resource
    ISSN: 1066-5099 , 1549-4918
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2010
    detail.hit.zdb_id: 2030643-X
    detail.hit.zdb_id: 1143556-2
    detail.hit.zdb_id: 605570-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Journal of Neuropathology & Experimental Neurology Vol. 79, No. 5 ( 2020-05-01), p. 530-541
    In: Journal of Neuropathology & Experimental Neurology, Oxford University Press (OUP), Vol. 79, No. 5 ( 2020-05-01), p. 530-541
    Abstract: Obesity causes brain injuries with inflammatory and structural changes, leading to neurodegeneration. Although increased circulating lipocalin 2 (LCN2) level has been implicated in neurodegenerative diseases, the precise mechanism of neurodegeneration in obesity is not clear. Here, we investigated whether LCN2-mediated signaling promotes neurodegeneration in the hippocampus of leptin-deficient ob/ob mice, which are characterized by obesity, insulin resistance, systemic inflammation, and neuroinflammation. In particular, there was significant upregulation of both LCN2 and matrix metalloproteinase 9 levels from serum and hippocampus in ob/ob mice. Using RNA-seq analysis, we found that neurodegeneration- sortilin-related receptor 1 (Sorl1) and brain-derived neurotrophic factor (Bdnf) genes were significantly reduced in the hippocampus of ob/ob mice. We additionally found that the endosome-related WD repeat and FYVE-domain-containing 1 (Wdfy1) gene were upregulated in ob/ob mice. In particular, iron overload-related mitochondrial ferritin and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) proteins were increased in the hippocampus of ob/ob. Thus, these findings indicate that iron-binding protein LCN2-mediated oxidative stress promotes neurodegeneration in ob/ob mice.
    Type of Medium: Online Resource
    ISSN: 0022-3069 , 1554-6578
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2033048-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Stem Cells, Oxford University Press (OUP), Vol. 31, No. 2 ( 2013-02-01), p. 282-292
    Abstract: Self-renewal and pluripotency are hallmark properties of pluripotent stem cells, including embryonic stem cells (ESCs) and iPS cells. Previous studies revealed the ESC-specific core transcription circuitry and showed that these core factors (e.g., Oct3/4, Sox2, and Nanog) regulate not only self-renewal but also pluripotent differentiation. However, it remains elusive how these two cell states are regulated and balanced during in vitro replication and differentiation. Here, we report that the transcription elongation factor Tcea3 is highly enriched in mouse ESCs (mESCs) and plays important roles in regulating the differentiation. Strikingly, altering Tcea3 expression in mESCs did not affect self-renewal under nondifferentiating condition; however, upon exposure to differentiating cues, its overexpression impaired in vitro differentiation capacity, and its knockdown biased differentiation toward mesodermal and endodermal fates. Furthermore, we identified Lefty1 as a downstream target of Tcea3 and showed that the Tcea3-Lefty1-Nodal-Smad2 pathway is an innate program critically regulating cell fate choices between self-replication and differentiation commitment. Together, we propose that Tcea3 critically regulates pluripotent differentiation of mESCs as a molecular rheostat of Nodal-Smad2/3 signaling.
    Type of Medium: Online Resource
    ISSN: 1066-5099 , 1549-4918
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2013
    detail.hit.zdb_id: 2030643-X
    detail.hit.zdb_id: 1143556-2
    detail.hit.zdb_id: 605570-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2010
    In:  Journal of Pharmacy and Pharmacology Vol. 56, No. 10 ( 2010-02-18), p. 1275-1282
    In: Journal of Pharmacy and Pharmacology, Oxford University Press (OUP), Vol. 56, No. 10 ( 2010-02-18), p. 1275-1282
    Abstract: Thirty-six semi-synthesized derivatives of asiatic acid were examined to determine if they had cognitive-enhancing activity in a passive avoidance test. Among the compounds tested, AS-2, AS-2–9–006 and AS-9–006 significantly alleviated scopolamine-induced memory impairment at doses of 1 and 10 mg kg−1. Furthermore, AS-2 and AS-2–9–006 (1 mg kg−1 administered four times daily) enhanced cognitive performance as determined in a water maze test. These three asiatic acid derivatives did not show any significant effect on the learning process in active avoidance tests. AS-2, AS-2–9–006 and AS-9–006 enhanced cholineacetyltransferase activity in a cholinergic neuroblastoma cell line, S-20Y, in-vitro. Therefore, AS-2, AS-2–9–006 and AS-9–006 may have therapeutic value in alleviating certain memory impairment observed in dementia.
    Type of Medium: Online Resource
    ISSN: 0022-3573 , 2042-7158
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2010
    detail.hit.zdb_id: 2041988-0
    detail.hit.zdb_id: 2050532-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2016
    In:  Stem Cells Translational Medicine Vol. 5, No. 11 ( 2016-11-01), p. 1538-1549
    In: Stem Cells Translational Medicine, Oxford University Press (OUP), Vol. 5, No. 11 ( 2016-11-01), p. 1538-1549
    Abstract: The regulation of microglial cell phenotype is a potential therapeutic intervention in neurodegenerative disease. Previously, we reported that transforming growth factor-β (TGF-β) levels in mesenchymal stromal cells (MSCs) could be used as potential biological markers to predict the effectiveness of autologous MSC therapy in patients with amyotrophic lateral sclerosis. However, the underlying mechanism of TGF-β in MSCs was not fully elucidated in determining the functional properties of microglia. In this study, we aimed to clarify the role of TGF-β that is involved in MSC effectiveness, especially focusing on microglia functional properties that play a pivotal role in neuroinflammation. We found that MSC-conditioned media (MSC-CM) inhibited proinflammatory cytokine expression, restored alternative activated microglia phenotype markers (fractalkine receptor, mannose receptor, CD200 receptor), and enhanced phagocytosis in lipopolysaccharide (LPS)-stimulated microglia. In addition, TGF-β in MSC-CM played a major role in these effects by inhibiting the nuclear factor-κB pathway and restoring the TGF-β pathway in LPS-stimulated microglia. Recombinant TGF-β also induced similar effects to MSC-CM in LPS-stimulated microglia. Therefore, we propose that MSCs can modulate the functional properties of microglia via TGF-β secretion, switching them from a classically activated phenotype to an inflammation-resolving phenotype. The latter role may be associated with the inhibition of neuroinflammatory processes in neurodegenerative disorders. Significance The results of this study showed that microglia functional properties may be modulated depending on the composition and quantity of mesenchymal stromal cell (MSC)-secreting factors. Transforming growth factor (TGF)-β is proposed as a modulator of microglia functional properties among MSC-secreting factors, and this study aligns with a previous clinical study by these same authors. TGF-β releasing capacity could be an important factor enhancing the therapeutic efficacy of MSCs in clinical trials.
    Type of Medium: Online Resource
    ISSN: 2157-6564 , 2157-6580
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2016
    detail.hit.zdb_id: 2642270-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Stem Cells, Oxford University Press (OUP), Vol. 38, No. 4 ( 2020-04-01), p. 516-529
    Abstract: Pluripotent stem cells (PSCs) can serve as an unlimited cell source for transplantation therapies for treating various devastating diseases, such as cardiovascular diseases, diabetes, and Parkinson's disease. However, PSC transplantation has some associated risks, including teratoma formation from the remaining undifferentiated PSCs. Thus, for successful clinical application, it is essential to ablate the proliferative PSCs before or after transplantation. In this study, neural stem cell-derived conditioned medium (NSC-CM) inhibited the proliferation of PSCs and PSC-derived neural precursor (NP) cells without influencing the potential of PSC-NP cells to differentiate into neurons in vitro and prevented teratoma growth in vivo. Moreover, we found that the NSC-CM remarkably decreased the expression levels of Oct4 and cyclin D1 that Oct4 directly binds to and increased the cleaved-caspase 3-positive cell death through the DNA damage response in PSCs and PSC-NPs. Interestingly, we found that NSCs distinctly secreted the tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 proteins. These proteins suppressed not only the proliferation of PSCs in cell culture but also teratoma growth in mice transplanted with PSCs through inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 activity. Taken together, these results suggest that the TIMP proteins may improve the efficacy and safety of the PSC-based transplantation therapy.
    Type of Medium: Online Resource
    ISSN: 1066-5099 , 1549-4918
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2030643-X
    detail.hit.zdb_id: 1143556-2
    detail.hit.zdb_id: 605570-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2015
    In:  Journal of the American Medical Informatics Association Vol. 22, No. 1 ( 2015-01-01), p. 109-120
    In: Journal of the American Medical Informatics Association, Oxford University Press (OUP), Vol. 22, No. 1 ( 2015-01-01), p. 109-120
    Abstract: Objective Cancer can involve gene dysregulation via multiple mechanisms, so no single level of genomic data fully elucidates tumor behavior due to the presence of numerous genomic variations within or between levels in a biological system. We have previously proposed a graph-based integration approach that combines multi-omics data including copy number alteration, methylation, miRNA, and gene expression data for predicting clinical outcome in cancer. However, genomic features likely interact with other genomic features in complex signaling or regulatory networks, since cancer is caused by alterations in pathways or complete processes. Methods Here we propose a new graph-based framework for integrating multi-omics data and genomic knowledge to improve power in predicting clinical outcomes and elucidate interplay between different levels. To highlight the validity of our proposed framework, we used an ovarian cancer dataset from The Cancer Genome Atlas for predicting stage, grade, and survival outcomes. Results Integrating multi-omics data with genomic knowledge to construct pre-defined features resulted in higher performance in clinical outcome prediction and higher stability. For the grade outcome, the model with gene expression data produced an area under the receiver operating characteristic curve (AUC) of 0.7866. However, models of the integration with pathway, Gene Ontology, chromosomal gene set, and motif gene set consistently outperformed the model with genomic data only, attaining AUCs of 0.7873, 0.8433, 0.8254, and 0.8179, respectively. Conclusions Integrating multi-omics data and genomic knowledge to improve understanding of molecular pathogenesis and underlying biology in cancer should improve diagnostic and prognostic indicators and the effectiveness of therapies.
    Type of Medium: Online Resource
    ISSN: 1527-974X , 1067-5027
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 2018371-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2015
    In:  Bioinformatics Vol. 31, No. 13 ( 2015-07-01), p. 2066-2074
    In: Bioinformatics, Oxford University Press (OUP), Vol. 31, No. 13 ( 2015-07-01), p. 2066-2074
    Abstract: Motivation: Genome-wide mapping of chromatin states is essential for defining regulatory elements and inferring their activities in eukaryotic genomes. A number of hidden Markov model (HMM)-based methods have been developed to infer chromatin state maps from genome-wide histone modification data for an individual genome. To perform a principled comparison of evolutionarily distant epigenomes, we must consider species-specific biases such as differences in genome size, strength of signal enrichment and co-occurrence patterns of histone modifications. Results: Here, we present a new Bayesian non-parametric method called hierarchically linked infinite HMM (hiHMM) to jointly infer chromatin state maps in multiple genomes (different species, cell types and developmental stages) using genome-wide histone modification data. This flexible framework provides a new way to learn a consistent definition of chromatin states across multiple genomes, thus facilitating a direct comparison among them. We demonstrate the utility of this method using synthetic data as well as multiple modENCODE ChIP-seq datasets. Conclusion: The hierarchical and Bayesian non-parametric formulation in our approach is an important extension to the current set of methodologies for comparative chromatin landscape analysis. Availability and implementation: Source codes are available at https://github.com/kasohn/hiHMM. Chromatin data are available at http://encode-x.med.harvard.edu/data_sets/chromatin/. Contact:  peter_park@harvard.edu or juhan@snu.ac.kr Supplementary information:  Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4811 , 1367-4803
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: STEM CELLS, Oxford University Press (OUP), Vol. 20, No. 1 ( 2002-01), p. 73-79
    Type of Medium: Online Resource
    ISSN: 1066-5099 , 1549-4918
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2002
    detail.hit.zdb_id: 2030643-X
    detail.hit.zdb_id: 1143556-2
    detail.hit.zdb_id: 605570-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: The Oncologist, Oxford University Press (OUP), Vol. 27, No. 12 ( 2022-12-09), p. e931-e937
    Abstract: Coronavirus disease 2019 (COVID-19) pandemic affected millions of individuals, and patients with cancer are known to be more susceptible. Vaccines against SARS-CoV-2 have been developed and used for patients with cancer, but scarce data are available on their efficacy in patients under active anti-cancer therapies. Materials and Methods In this study, we semi-quantitatively measured the titers of the immunoglobulin G against the anti-spike protein subunit 1 of SARS-CoV-2 after vaccination of patients with early breast cancer undergoing concurrent chemotherapy, endocrinal or targeted non-cytotoxic treatments, and no treatments. Results Standard doses of COVID-19 vaccines provided sufficient immune responses in patients with early breast cancer, regardless of the type of anticancer therapies. However, the post-vaccination serum anti-spike antibody titers were significantly lower in the patients under cytotoxic chemotherapy. Conclusion Our study emphasizes the importance of the personalized risk stratification and consideration for booster doses in more vulnerable populations.
    Type of Medium: Online Resource
    ISSN: 1083-7159 , 1549-490X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2023829-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...