GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: FEMS Microbiology Letters, Oxford University Press (OUP), Vol. 119, No. 1-2 ( 1994-06), p. 27-32
    Type of Medium: Online Resource
    ISSN: 0378-1097 , 1574-6968
    URL: Issue
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 1994
    detail.hit.zdb_id: 1501716-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Geophysical Journal International Vol. 235, No. 1 ( 2023-05-27), p. 342-352
    In: Geophysical Journal International, Oxford University Press (OUP), Vol. 235, No. 1 ( 2023-05-27), p. 342-352
    Abstract: Mass loss from polar ice sheets is becoming the dominant contributor to current sea level changes, as well as one of the largest sources of uncertainty in sea level projections. The spatial pattern of sea level change is sensitive to the geometry of ice sheet mass changes, and local sea level changes can deviate from the global mean sea level change due to gravitational, Earth rotational and deformational (GRD) effects. The pattern of GRD sea level change associated with the melting of an ice sheet is often considered to remain relatively constant in time outside the vicinity of the ice sheet. For example, in the sea level projections from the most recent IPCC sixth assessment report (AR6), the geometry of ice sheet mass loss was treated as constant during the 21st century. However, ice sheet simulations predict that the geometry of ice mass changes across a given ice sheet and the relative mass loss from each ice sheet will vary during the coming century, producing patters of global sea level changes that are spatiotemporally variable. We adopt a sea level model that includes GRD effects and shoreline migration to calculate time-varying sea level patterns associated with projections of the Greenland and Antarctic Ice Sheets during the coming century. We find that in some cases, sea level changes can be substantially amplified above the global mean early in the century, with this amplification diminishing by 2100. We explain these differences by calculating the contributions of Earth rotation as well as gravitational and deformational effects to the projected sea level changes separately. We find in one case, for example, that ice gain on the Antarctic Peninsula can cause an amplification of up to 2.9 times the global mean sea level equivalent along South American coastlines due to positive interference of GRD effects. To explore the uncertainty introduced by differences in predicted ice mass geometry, we predict the sea level changes following end-member mass loss scenarios for various regions of the Antarctic Ice Sheet from the ISMIP6 model ensemblely, and find that sea level amplification above the global mean sea level equivalent differ by up to 1.9 times between different ice mass projections along global coastlines outside of Greenland and Antarctica. This work suggests that assessments of future sea level hazard should consider not only the integrated mass changes of ice sheets, but also temporal variations in the geometry of the ice mass changes across the ice sheets. As well, this study highlights the importance of constraining the relative timing of ice mass changes between the Greenland and Antarctic Ice Sheets.
    Type of Medium: Online Resource
    ISSN: 0956-540X , 1365-246X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 3042-9
    detail.hit.zdb_id: 2006420-2
    detail.hit.zdb_id: 1002799-3
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Database, Oxford University Press (OUP), Vol. 2019 ( 2019-01-01)
    Abstract: Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.
    Type of Medium: Online Resource
    ISSN: 1758-0463
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2496706-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...