GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (2)
Material
Publisher
  • Oxford University Press (OUP)  (2)
Language
Years
Subjects(RVK)
  • 1
    In: Postgraduate Medical Journal, Oxford University Press (OUP), ( 2023-08-24)
    Abstract: Several studies have indicated that residual cardiovascular risk might be associated with elevated lipoprotein(a) [Lp(a)] even in the setting of controlled low-density lipoprotein cholesterol (LDL-C). We aimed to prospectively examine the association between Lp(a) and unfavorable functional outcome among patients with acute ischemic stroke when Lp(a) and LDL-C were discordant. Methods Based on samples from the Infectious Factors, Inflammatory Markers and Prognosis of Acute Ischemic Stroke study, 973 patients with baseline plasma Lp(a) levels were included. The primary outcome was the composite outcome of death or major disability (modified Rankin Scale score of 3–6) at 6 months. Logistic regression models were used to estimate the risk for the primary outcome. Discordance analyses were performed, using difference in percentile units ( & gt;10 units), to detect the relative risk when Lp(a) and LDL-C were discordant. Results In total, 201 (20.7%) participants experienced major disability or death at 6 months. The multivariable-adjusted odds ratio (OR) for the highest quartile was 1.88 [95% confidence interval (CI): 1.16–3.04] compared with the lowest quartile. Each 1-SD higher log-Lp(a) was associated with a 23% increased risk (95% CI: 2%–47%) for the primary outcome. Compared with the concordant group, the high Lp(a)/low LDL-C discordant group was associated with increased risk for the primary outcome (adjusted OR: 1.59, 95% CI: 1.01–2.52). Conclusions Elevated plasma Lp(a) levels were associated with increased risk of major disability and death at 6 months. Discordantly high Lp(a)/low LDL-C was associated with an unfavorable functional outcome, supporting the predictive potential of plasma Lp(a) after ischemic stroke, especially when discordant with LDL-C. Key messages What is already known on this topic Previous studies have indicated that a positive association between increased lipoprotein(a) [Lp(a)] and cardiovascular disease risk remained even in patients who achieved controlled low-density lipoprotein cholesterol (LDL-C) levels. The findings of studies exploring the association between Lp(a) and unfavorable clinical outcomes of stroke were inconsistent, and whether Lp(a) can predict the risk of unfavorable functional outcome in stroke patients when Lp(a) and LDL-C levels are discordant remains unknown. What this study adds Elevated plasma Lp(a) levels were associated with increased risk of major disability and death at 6 months beyond LDL-C levels in acute ischemic stroke patients. How this study might affect research, practice, or policy The combination of LDL-C-lowering therapies and Lp(a)-lowering therapies may have better clinical efficacy for patients with ischemic stroke, and it is of great clinical interest to further explore this possibility in dedicated randomized trials.
    Type of Medium: Online Resource
    ISSN: 0032-5473 , 1469-0756
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2009568-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Plant Physiology Vol. 193, No. 2 ( 2023-09-22), p. 1547-1560
    In: Plant Physiology, Oxford University Press (OUP), Vol. 193, No. 2 ( 2023-09-22), p. 1547-1560
    Abstract: Phytophthora capsici deploys effector proteins to manipulate host immunity and facilitate its colonization. However, the underlying mechanisms remain largely unclear. In this study, we demonstrated that a Sne-like (Snel) RxLR effector gene PcSnel4 is highly expressed at the early stages of P. capsici infection in Nicotiana benthamiana. Knocking out both alleles of PcSnel4 attenuated the virulence of P. capsici, while expression of PcSnel4 promoted its colonization in N. benthamiana. PcSnel4B could suppress the hypersensitive reaction (HR) induced by Avr3a-R3a and RESISTANCE TO PSEUDOMONAS SYRINGAE 2 (AtRPS2), but it did not suppress cell death elicited by Phytophthora infestin 1 (INF1) and Crinkler 4 (CRN4). COP9 signalosome 5 (CSN5) in N. benthamiana was identified as a host target of PcSnel4. Silencing NbCSN5 compromised the cell death induced by AtRPS2. PcSnel4B impaired the interaction and colocalization of Cullin1 (CUL1) and CSN5 in vivo. Expression of AtCUL1 promoted the degradation of AtRPS2 and disrupted HR, while AtCSN5a stabilized AtRPS2 and promoted HR, regardless of the expression of AtCUL1. PcSnel4 counteracted the effect of AtCSN5 and enhanced the degradation of AtRPS2, resulting in HR suppression. This study deciphered the underlying mechanism of PcSnel4-mediated suppression of HR induced by AtRPS2.
    Type of Medium: Online Resource
    ISSN: 0032-0889 , 1532-2548
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...