GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Plant Cell, Oxford University Press (OUP), Vol. 19, No. 4 ( 2007-05-25), p. 1221-1234
    Abstract: Rhizobial bacteria activate the formation of nodules on the appropriate host legume plant, and this requires the bacterial signaling molecule Nod factor. Perception of Nod factor in the plant leads to the activation of a number of rhizobial-induced genes. Putative transcriptional regulators in the GRAS family are known to function in Nod factor signaling, but these proteins have not been shown to be capable of direct DNA binding. Here, we identify an ERF transcription factor, ERF Required for Nodulation (ERN), which contains a highly conserved AP2 DNA binding domain, that is necessary for nodulation. Mutations in this gene block the initiation and development of rhizobial invasion structures, termed infection threads, and thus block nodule invasion by the bacteria. We show that ERN is necessary for Nod factor–induced gene expression and for spontaneous nodulation activated by the calcium- and calmodulin-dependent protein kinase, DMI3, which is a component of the Nod factor signaling pathway. We propose that ERN is a component of the Nod factor signal transduction pathway and functions downstream of DMI3 to activate nodulation gene expression.
    Type of Medium: Online Resource
    ISSN: 1532-298X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2007
    detail.hit.zdb_id: 623171-8
    detail.hit.zdb_id: 2004373-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2003
    In:  Plant Physiology Vol. 131, No. 3 ( 2003-03-01), p. 998-1008
    In: Plant Physiology, Oxford University Press (OUP), Vol. 131, No. 3 ( 2003-03-01), p. 998-1008
    Abstract: We report the isolation and characterization of a newMedicago truncatula hyper-nodulation mutant, designatedsunn (super numeric nodules). Similar to the previously described ethylene-insensitive mutant sickle,sunn exhibits a 10-fold increase in the number of nodules within the primary nodulation zone. Despite this general similarity, these two mutants are readily distinguished based on anatomical, genetic, physiological, and molecular criteria. In contrast to sickle, where insensitivity to ethylene is thought to be causal to the hyper-nodulation phenotype (R.V. Penmetsa, D.R. Cook [1997] Science 275: 527–530), nodulation in sunn is normally sensitive to ethylene. Nevertheless, sunnexhibits seedling root growth that is insensitive to ethylene, although other aspects of the ethylene triple response are normal; these observations suggest that hormonal responses might condition thesunn phenotype in a manner distinct fromsickle. The two mutants also differ in the anatomy of the nodulation zone: Successful infection and nodule development insunn occur predominantly opposite xylem poles, similar to wild type. In sickle, however, both infection and nodulation occur randomly throughout the circumference of the developing root. Genetic analysis indicates that sunnand sickle correspond to separate and unlinked loci, whereas the sunn/skl double mutant exhibits a novel and additive super-nodulation phenotype. Taken together, these results suggest a working hypothesis wherein sunn andsickle define distinct genetic pathways, withskl regulating the number and distribution of successful infection events, and sunn regulating nodule organogenesis.
    Type of Medium: Online Resource
    ISSN: 1532-2548 , 0032-0889
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2003
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Plant Cell, Oxford University Press (OUP), Vol. 23, No. 7 ( 2011-07), p. 2774-2787
    Type of Medium: Online Resource
    ISSN: 1040-4651 , 1532-298X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2011
    detail.hit.zdb_id: 623171-8
    detail.hit.zdb_id: 2004373-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Plant Physiology, Oxford University Press (OUP), Vol. 128, No. 4 ( 2002-04-01), p. 1390-1401
    Abstract: Bacterial Nod factors trigger a number of cellular responses in root hairs of compatible legume hosts, which include periodic, transient increases in cytosolic calcium levels, termed calcium spiking. We screened 13 pharmaceutical modulators of eukaryotic signal transduction for effects on Nod factor-induced calcium spiking. The purpose of this screening was 2-fold: to implicate enzymes required for Nod factor-induced calcium spiking in Medicago sp., and to identify inhibitors of calcium spiking suitable for correlating calcium spiking to other Nod factor responses to begin to understand the function of calcium spiking in Nod factor signal transduction. 2-Aminoethoxydiphenylborate, caffeine, cyclopiazonic acid (CPA), 2,5-di-(t-butyl)-1,4-hydroquinone, and U-73122 inhibit Nod factor-induced calcium spiking. CPA and U-73122 are inhibitors of plant type IIA calcium pumps and phospholipase C, respectively, and implicate the requirement for these enzymes in Nod factor-induced calcium spiking. CPA and U-73122 inhibit Nod factor-induced calcium spiking robustly at concentrations with no apparent toxicity to root hairs, making CPA and U-73122 suitable for testing whether calcium spiking is causal to subsequent Nod factor responses.
    Type of Medium: Online Resource
    ISSN: 1532-2548 , 0032-0889
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2002
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2002
    In:  Plant Physiology Vol. 129, No. 1 ( 2002-05-01), p. 211-224
    In: Plant Physiology, Oxford University Press (OUP), Vol. 129, No. 1 ( 2002-05-01), p. 211-224
    Abstract: In the Rhizobium-legume symbiosis, compatible bacteria and host plants interact through an exchange of signals: Host compounds promote the expression of bacterial biosynthetic nod(nodulation) genes leading to the production of a lipochito-oligosaccharide signal, the Nod factor (NF). The particular array of nod genes carried by a given species ofRhizobium determines the NF structure synthesized and defines the range of legume hosts by which the bacterium is recognized. Purified NF can induce early host responses even in the absence of live Rhizobium One of the earliest known host responses to NF is an oscillatory behavior of cytoplasmic calcium, or calcium spiking, in root hair cells, initially observed in Medicago spp. and subsequently characterized in four other genera (D.W. Ehrhardt, R. Wais, S.R. Long [1996] Cell 85: 673–681; S.A. Walker, V. Viprey, J.A. Downie [2000] Proc Natl Acad Sci USA 97: 13413–13418; D.W. Ehrhardt, J.A. Downie, J. Harris, R.J. Wais, and S.R. Long, unpublished data). We sought to determine whether live Rhizobium trigger a rapid calcium spiking response and whether this response is NF dependent. We show that, in the Sinorhizobium meliloti-Medicago truncatula interaction, bacteria elicit a calcium spiking response that is indistinguishable from the response to purified NF. We determine that calcium spiking is a nod gene-dependent host response. Studies of calcium spiking in M. truncatula and alfalfa (Medicago sativa) also uncovered the possibility of differences in early NF signal transduction. We further demonstrate the sufficiency of thenod genes for inducing calcium spiking by usingEscherichia coli BL21 (DE3) engineered to express 11S. meliloti nod genes.
    Type of Medium: Online Resource
    ISSN: 1532-2548 , 0032-0889
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2002
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2000
    In:  Plant Physiology Vol. 124, No. 3 ( 2000-11-01), p. 959-970
    In: Plant Physiology, Oxford University Press (OUP), Vol. 124, No. 3 ( 2000-11-01), p. 959-970
    Abstract: Fluorescent microspheres were used as material markers to investigate the relative rates of cell surface expansion at the growing tips of Medicago truncatula root hairs. From the analysis of tip shape and microsphere movements, we propose three characteristic zones of expansion in growing root hairs. The center of the apical dome is an area of 1- to 2-μm diameter with relatively constant curvature and high growth rate. Distal to the apex is a more rapidly expanding region 1 to 2 μm in width exhibiting constant surges of off-axis growth. This middle region forms an annulus of maximum growth rate and is visible as an area of accentuated curvature in the tip profile. The remainder of the apical dome is characterized by strong radial expansion anisotropy where the meridional rate of expansion falls below the radial expansion rate. Data also suggest possible meridional contraction at the juncture between the apical dome and the cell body. The cell cylinder distal to the tip expands slightly over time, but only around the circumference. These data for surface expansion in the legume root hair provide new insight into the mechanism of tip growth and the morphogenesis of the root hair.
    Type of Medium: Online Resource
    ISSN: 1532-2548 , 0032-0889
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2000
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2003
    In:  Plant Physiology Vol. 131, No. 3 ( 2003-03-01), p. 976-984
    In: Plant Physiology, Oxford University Press (OUP), Vol. 131, No. 3 ( 2003-03-01), p. 976-984
    Abstract: Modulation of intracellular calcium levels plays a key role in the transduction of many biological signals. Here, we characterize early calcium responses of wild-type and mutant Medicago truncatula plants to nodulation factors produced by the bacterial symbiont Sinorhizobium meliloti using a dual-dye ratiometric imaging technique. When presented with 1 nm Nod factor, root hair cells exhibited only the previously described calcium spiking response initiating 10 min after application. Nod factor (10 nm) elicited an immediate increase in calcium levels that was temporally earlier and spatially distinct from calcium spikes occurring later in the same cell. Nod factor analogs that were structurally related, applied at 10 nm, failed to initiate this calcium flux response. Cells induced to spike with low Nod factor concentrations show a calcium flux response when Nod factor is raised from 1 to 10 nm. Plant mutants previously shown to be deficient for the calcium spiking response (dmi1 and dmi2) exhibited an immediate, truncated calcium flux with 10 nm Nod factor, demonstrating a competence to respond to Nod factor but an impaired ability to generate a full biphasic response. These results demonstrate that the legume root hair cell exhibits two independent calcium responses to Nod factor triggered at different agonist concentrations and suggests an early branch point in the Nod factor signal transduction pathway.
    Type of Medium: Online Resource
    ISSN: 1532-2548 , 0032-0889
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2003
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 1987
    In:  Genetics Vol. 117, No. 2 ( 1987-10-01), p. 191-201
    In: Genetics, Oxford University Press (OUP), Vol. 117, No. 2 ( 1987-10-01), p. 191-201
    Abstract: We have established the DNA sequence and analyzed the transcription and translation products of a series of putative nodulation (nod) genes in Rhizobium meliloti strain 1021. Four loci have been designated nodF, nodE, nodG and nodH. The correlation of transposon insertion positions with phenotypes and open reading frames was confirmed by sequencing the insertion junctions of the transposons. The protein products of these nod genes were visualized by in vitro expression of cloned DNA segments in a R. meliloti transcription-translation system. In addition, the sequence for nodG was substantiated by creating translational fusions in all three reading frames at several points in the sequence; the resulting fusions were expressed in vitro in both E. coli and R. meliloti transcription-translation systems. A DNA segment bearing several open reading frames downstream of nodG corresponds to the putative nod gene mutated in strain nod-216. The transcription start sites of nodF and nodH were mapped by primer extension of RNA from cells induced with the plant flavone, luteolin. Initiation of transcription occurs approximately 25 bp downstream from the conserved sequence designated the "nod box," suggesting that this conserved sequence acts as an upstream regulator of inducible nod gene expression. Its distance from the transcription start site is more suggestive of an activator binding site rather than an RNA polymerase binding site.
    Type of Medium: Online Resource
    ISSN: 1943-2631
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 1987
    detail.hit.zdb_id: 1477228-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 1998
    In:  Plant Physiology Vol. 117, No. 4 ( 1998-08-01), p. 1325-1332
    In: Plant Physiology, Oxford University Press (OUP), Vol. 117, No. 4 ( 1998-08-01), p. 1325-1332
    Abstract: The root hair is a specialized cell type involved in water and nutrient uptake in plants. In legumes the root hair is also the primary site of recognition and infection by symbiotic nitrogen-fixingRhizobium bacteria. We have studied the root hairs ofMedicago truncatula, which is emerging as an increasingly important model legume for studies of symbiotic nodulation. However, only 27 genes from M. truncatulawere represented in GenBank/EMBL as of October, 1997. We report here the construction of a root-hair-enriched cDNA library and single-pass sequencing of randomly selected clones. Expressed sequence tags (899 total, 603 of which have homology to known genes) were generated and made available on the Internet. We believe that the database and the associated DNA materials will provide a useful resource to the community of scientists studying the biology of roots, root tips, root hairs, and nodulation.
    Type of Medium: Online Resource
    ISSN: 1532-2548 , 0032-0889
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 1998
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2003
    In:  Plant Physiology Vol. 131, No. 3 ( 2003-03-01), p. 1027-1032
    In: Plant Physiology, Oxford University Press (OUP), Vol. 131, No. 3 ( 2003-03-01), p. 1027-1032
    Abstract: Bacterially derived Nod factor is critical in the establishment of the legume/rhizobia symbiosis. Understanding the mechanisms of Nod factor perception and signal transduction in the plant will greatly advance our understanding of this complex interaction. Here, we describe the identification of a new locus, nodulation-signaling pathway 2 (NSP2), of Medicago truncatula that is involved in Nod factor signaling. Mutants at this locus are blocked for Nod factor-induced gene expression and show a reduced root hair deformation response. nsp2 plants also show a complete absence of infection and cortical cell division following Sinorhizobium meliloti inoculation. Nod factor-induced calcium spiking, one of the earliest responses tested, is still functional in these mutant plants. We conclude that the geneNSP2 is a component of the Nod factor signal transduction pathway that lies downstream of the calcium-spiking response.
    Type of Medium: Online Resource
    ISSN: 1532-2548 , 0032-0889
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2003
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...