GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (64)
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2011
    In:  Plant and Cell Physiology Vol. 52, No. 6 ( 2011-6), p. 967-982
    In: Plant and Cell Physiology, Oxford University Press (OUP), Vol. 52, No. 6 ( 2011-6), p. 967-982
    Type of Medium: Online Resource
    ISSN: 1471-9053 , 0032-0781
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2011
    detail.hit.zdb_id: 2020758-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Journal of Experimental Botany Vol. 72, No. 6 ( 2021-03-17), p. 2114-2124
    In: Journal of Experimental Botany, Oxford University Press (OUP), Vol. 72, No. 6 ( 2021-03-17), p. 2114-2124
    Abstract: Iron is an essential element for most organisms. As an indispensable co-factor of many enzymes, iron is involved in various crucial metabolic processes that are required for the survival of plants and pathogens. Conversely, excessive iron produces highly active reactive oxygen species, which are toxic to the cells of plants and pathogens. Therefore, plants and pathogens have evolved sophisticated mechanisms to modulate iron status at a moderate level for maintaining their fitness. Over the past decades, many efforts have been made to reveal these mechanisms, and some progress has been made. In this review, we describe recent advances in understanding the roles of iron in plant–pathogen interactions and propose prospects for future studies.
    Type of Medium: Online Resource
    ISSN: 0022-0957 , 1460-2431
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1466717-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Annals of Botany, Oxford University Press (OUP), Vol. 130, No. 2 ( 2022-09-06), p. 173-187
    Abstract: Ribonucleotide reductase (RNR), functioning in the de novo synthesis of deoxyribonucleoside triphosphates (dNTPs), is crucial for DNA replication and cell cycle progression. In most plants, the large subunits of RNR have more than one homologous gene. However, the different functions of these homologous genes in plant development remain unknown. In this study, we obtained the mutants of two large subunits of RNR in tomato and studied their functions. Methods The mutant ylc1 was obtained by ethyl methyl sulfonate (EMS) treatment. Through map-based cloning, complementation and knock-out experiments, it was confirmed that YLC1 encodes a large subunit of RNR (SlRNRL1). The expression level of the genes related to cell cycle progression, chloroplast biogenesis and photosynthesis was assessed by RNA-sequencing. In addition, we knocked out SlRNRL2 (a SlRNRL1 homologue) using CRISPR-Cas9 technology in the tomato genome, and we down-regulated SlRNRL2 expression in the genetic background of slrnrl1-1 using a tobacco rattle virus-induced gene silencing (VIGS) system. Key results The mutant slrnrl1 exhibited dwarf stature, chlorotic young leaves and smaller fruits. Physiological and transcriptomic analyses indicated that SlRNRL1 plays a crucial role in the regulation of cell cycle progression, chloroplast biogenesis and photosynthesis in tomato. The slrnrl2 mutant did not exhibit any visible phenotype. SlRNRL2 has a redundant function with SlRNRL1, and the double mutant slrnrl1slrnrl2 is lethal. Conclusions SlRNRL1 is essential for cell cycle progression, chloroplast biogenesis and photosynthesis. In addition, SlRNRL1 and SlRNRL2 possess redundant functions and at least one of these RNRLs is required for tomato survival, growth and development.
    Type of Medium: Online Resource
    ISSN: 0305-7364 , 1095-8290
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1461328-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2009
    In:  Genetics Vol. 181, No. 4 ( 2009-04-01), p. 1183-1193
    In: Genetics, Oxford University Press (OUP), Vol. 181, No. 4 ( 2009-04-01), p. 1183-1193
    Abstract: Rider is a novel and recently active Ty1-copia-like retrotransposon isolated from the T3238fer mutant of tomato. Structurally, it is delimited by a duplication of target sites and contains two long terminal direct repeats and an internal open reading frame, which encodes a Ty1-copia-type polyprotein with characteristic protein domains required for retrotransposition. The family of Rider elements has an intermediate copy number and is scattered in the chromosomes of tomato. Rider family members in the tomato genome share high sequence similarity, but different structural groups were identified (full-size elements, deletion derivatives, and solo LTRs). Southern blot analysis in Solanaceae species showed that Rider was a Lycopersicon-specific element. Sequence analysis revealed that among other plants, two Arabidopsis elements (named as Rider-like 1 and Rider-like 2) are most similar to Rider in both the coding and noncoding regions. RT–PCR analysis indicates that Rider is constitutively expressed in tomato plants. The phylogeny-based parsimony analysis and the sequence substitution analyses of these data suggest that these Rider-like elements originated from a recent introgression of Rider into the tomato genome by horizontal transfer 1–6 million years ago. Considering its transcriptional activity and the recent insertion of the element into at least two genes, Rider is a recently active retrotransposon in the tomato genome.
    Type of Medium: Online Resource
    ISSN: 1943-2631
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2009
    detail.hit.zdb_id: 1477228-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Plant Physiology, Oxford University Press (OUP), Vol. 158, No. 2 ( 2012-02-03), p. 790-800
    Abstract: Cadmium (Cd) is toxic to plant cells. Under Cd exposure, the plant displayed leaf chlorosis, which is a typical symptom of iron (Fe) deficiency. Interactions of Cd with Fe have been reported. However, the molecular mechanisms of Cd-Fe interactions are not well understood. Here, we showed that FER-like Deficiency Induced Transcripition Factor (FIT), AtbHLH38, and AtbHLH39, three basic helix-loop-helix transcription factors involved in Fe homeostasis in plants, also play important roles in Cd tolerance. The gene expression analysis showed that the expression of FIT, AtbHLH38, and AtbHLH39 was up-regulated in the roots of plants treated with Cd. The plants overexpressing AtbHLH39 and double-overexpressing FIT/AtbHLH38 and FIT/AtbHLH39 exhibited more tolerance to Cd exposure than wild type, whereas no Cd tolerance was observed in plants overexpressing either AtbHLH38 or FIT. Further analysis revealed that co-overexpression of FIT with AtbHLH38 or AtbHLH39 constitutively activated the expression of Heavy Metal Associated3 (HMA3), Metal Tolerance Protein3 (MTP3), Iron Regulated Transporter2 (IRT2), and Iron Regulated Gene2 (IREG2), which are involved in the heavy metal detoxification in Arabidopsis (Arabidopis thaliana). Moreover, co-overexpression of FIT with AtbHLH38 or AtbHLH39 also enhanced the expression of NICOTIANAMINE SYNTHETASE1 (NAS1) and NAS2, resulting in the accumulation of nicotiananamine, a crucial chelator for Fe transportation and homeostasis. Finally, we showed that maintaining high Fe content in shoots under Cd exposure could alleviate the Cd toxicity. Our results provide new insight to understand the molecular mechanisms of Cd tolerance in plants.
    Type of Medium: Online Resource
    ISSN: 1532-2548
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2012
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2006
    In:  Plant Physiology Vol. 140, No. 4 ( 2006-04-01), p. 1345-1354
    In: Plant Physiology, Oxford University Press (OUP), Vol. 140, No. 4 ( 2006-04-01), p. 1345-1354
    Abstract: Iron is an essential element for almost all living organisms, actively involved in a variety of cellular activities. To acquire iron from soil, strategy I plants such as Arabidopsis (Arabidopsis thaliana) must first reduce ferric to ferrous iron by Fe(III)-chelate reductases (FROs). FRO genes display distinctive expression patterns in several plant species. However, regulation of FRO genes is not well understood. Here, we report a systematic characterization of the AtFRO6 expression during plant growth and development. AtFRO6, encoding a putative FRO, is specifically expressed in green-aerial tissues in a light-dependent manner. Analysis of mutant promoter-β-glucuronidase reporter genes in transgenic Arabidopsis plants revealed the presence of multiple light-responsive elements in the AtFRO6 promoter. These light-responsive elements may act synergistically to confer light responsiveness to the AtFRO6 promoter. Moreover, no AtFRO6 expression was detected in dedifferentiated green calli of the korrigan1-2 (kor1-2) mutant or undifferentiated calli derived from wild-type explants. Conversely, AtFRO6 is expressed in redifferentiated kor1-2 shoot-like structures and differentiating calli of wild-type explants. In addition, AtFRO7, but not AtFRO5 and AtFRO8, also shows a reduced expression level in kor1-2 green calli. These results suggest that whereas photosynthesis is necessary but not sufficient, both light and cell differentiation are necessary for AtFRO6 expression. We propose that AtFRO6 expression is light regulated in a tissue- or cell differentiation-specific manner to facilitate the acquisition of iron in response to distinctive developmental cues.
    Type of Medium: Online Resource
    ISSN: 1532-2548 , 0032-0889
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2006
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2015
    In:  Annals of Botany Vol. 116, No. 1 ( 2015-07), p. 23-34
    In: Annals of Botany, Oxford University Press (OUP), Vol. 116, No. 1 ( 2015-07), p. 23-34
    Type of Medium: Online Resource
    ISSN: 0305-7364 , 1095-8290
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 1461328-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Experimental Botany, Oxford University Press (OUP), Vol. 71, No. 18 ( 2020-09-19), p. 5562-5576
    Abstract: Plants can be simultaneously exposed to multiple stresses. The interplay of abiotic and biotic stresses may result in synergistic or antagonistic effects on plant development and health. Temporary drought stress can stimulate plant immunity; however, the molecular mechanism of drought-induced immunity is largely unknown. In this study, we demonstrate that cysteine protease RD21A is required for drought-induced immunity. Temporarily drought-treated wild-type Arabidopsis plants became more sensitive to the bacterial pathogen-associated molecular pattern flg22, triggering stomatal closure, which resulted in increased resistance to Pseudomonas syringae pv. tomato DC3000 (Pst-DC3000). Knocking out rd21a inhibited flg22-triggered stomatal closure and compromised the drought-induced immunity. Ubiquitin E3 ligase SINAT4 interacted with RD21A and promoted its degradation in vivo. The overexpression of SINAT4 also consistently compromised the drought-induced immunity to Pst-DC3000. A bacterial type III effector, AvrRxo1, interacted with both SINAT4 and RD21A, enhancing SINAT4 activity and promoting the degradation of RD21A in vivo. Therefore, RD21A could be a positive regulator of drought-induced immunity, which could be targeted by pathogen virulence effectors during pathogenesis.
    Type of Medium: Online Resource
    ISSN: 0022-0957 , 1460-2431
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1466717-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2005
    In:  Plant and Cell Physiology Vol. 46, No. 9 ( 2005-09-01), p. 1505-1514
    In: Plant and Cell Physiology, Oxford University Press (OUP), Vol. 46, No. 9 ( 2005-09-01), p. 1505-1514
    Type of Medium: Online Resource
    ISSN: 1471-9053 , 0032-0781
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2005
    detail.hit.zdb_id: 2020758-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2005
    In:  Plant Physiology Vol. 138, No. 3 ( 2005-07-01), p. 1205-1215
    In: Plant Physiology, Oxford University Press (OUP), Vol. 138, No. 3 ( 2005-07-01), p. 1205-1215
    Abstract: Tomato (Lycopersicon esculentum) is a model species for molecular biology research and a candidate for large-scale genome sequencing. Pericentromeric heterochromatin constitutes a large portion of the tomato chromosomes. However, the knowledge of the structure, organization, and evolution of such regions remains very limited. Here, we report the analysis of a 198-kb sequence near the FER gene, located in a distal part of pericentromeric heterochromatin on the long arm of tomato chromosome 6. Nine genes, one pseudogene, and 55 transposable elements (TEs) were identified, showing a low gene density (19.8 kb/gene) and a high content of transposable elements ( & gt;45% of the sequence). Six genes (56B23_g3, g5, g7, g8, g9, and g10) have perfect matches ( & gt;98% identity) with tomato expressed sequence tags. Two genes (56B23_g1 and g6), which share & lt;98% sequence identity with expressed sequence tags, were confirmed for transcriptional activity by reverse transcription-PCR. The genes were not uniformly distributed along the sequence and grouped into gene islands separated by stretches of retrotransposons, forming a pattern similar to that found in the gene-rich regions of the large genomes of maize (Zea mays) and Triticeae. Long terminal repeat retrotransposons account for 60% of the TE sequence length. Sixteen of 55 TEs were completely new and remain unclassified. Surprisingly, five of the seven identified DNA transposons were closely associated with coding regions. The action of transposable elements and DNA rearrangements form the molecular basis of the dynamic genome evolution at the FER locus. Multiple rounds of genome duplication in Arabidopsis (Arabidopsis thaliana) and subsequent gene loss have generated a mosaic pattern of conservation between tomato and Arabidopsis orthologous sequences. Our data show that the distal parts of pericentromeric heterochromatin may contain many valuable genes and that these regions form an evolutionary active part of the tomato genome.
    Type of Medium: Online Resource
    ISSN: 1532-2548 , 0032-0889
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2005
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...