GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (3)
  • 1
    In: Journal of Animal Science, Oxford University Press (OUP), Vol. 101 ( 2023-01-03)
    Abstract: Probiotics, such as Lactobacillus and Bifidobacterium, promote growth in piglets by modulating gut microbiota composition and improving the host immune system. A strain of Lactobacillus sp. and Bifidobacterium thermacidophilum were previously isolated from fresh feces of Tibetan pigs. The effects of these isolated strains on growth performance, intestinal morphology, immunity, microbiota composition, and their metabolites were evaluated in weaned piglets. Thirty crossbred piglets were selected and fed either a basal diet (CON), a basal diet supplemented with aureomycin (ANT), or a basal diet supplemented with Lactobacillus sp. and B. thermacidophilum (LB) for 28 d. The piglets in the ANT and LB groups had significantly higher body weight gain than those in the CON group (P  & lt; 0.05). Piglets in the ANT and LB groups had regularly arranged villi and microvilli in the small intestine. Furthermore, they had improved immune function, as indicated by decreased serum concentrations of inflammatory cytokines (P  & lt; 0.05), improved components of immune cells in the blood, mesenteric lymph nodes, and spleen. Additionally, metagenomic sequencing indicated a significant shift in cecal bacterial composition and alterations in microbiota functional profiles following Lactobacillus sp. and B. thermacidophilum supplementation. Metabolomic results revealed that the metabolites were also altered, and Kyoto Encyclopedia of Genes and Genomes analysis revealed that several significantly altered metabolites were enriched in glycerophospholipid and cholesterol metabolism (P  & lt; 0.05). Furthermore, correlation analysis showed that several bacterial members were closely related to the alterations in metabolites, including Bacteroides sp., which were negatively correlated with triglyceride (16:0/18:0/20:4[5Z,8Z,11Z,14Z]), the metabolite that owned t he highest variable importance of projection scores. Collectively, our findings suggest that combined supplementation with Lactobacillus sp. and B. thermacidophilum significantly improved the growth performance, immunity, and microbiota composition in weaned piglets, making them prospective alternatives to antibiotics in swine production.
    Type of Medium: Online Resource
    ISSN: 0021-8812 , 1525-3163
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1490550-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2014
    In:  Journal of Industrial Microbiology and Biotechnology Vol. 41, No. 4 ( 2014-04-01), p. 721-731
    In: Journal of Industrial Microbiology and Biotechnology, Oxford University Press (OUP), Vol. 41, No. 4 ( 2014-04-01), p. 721-731
    Abstract: Acetyl-CoA, an important molecule in cellular metabolism, is generated in multiple subcellular compartments and mainly used for energy production, biosynthesis of a diverse set of molecules, and protein acetylation. In eukaryotes, cytosolic acetyl-CoA is derived mainly from the conversion of citrate and CoA by ATP-citrate lyase. Here, we describe the targeted deletions of acl1 and acl2, two tandem divergently transcribed genes encoding subunits of ATP-citrate lyase in Aspergillus niger. We show that loss of acl1 or/and acl2 results in a significant decrease of acetyl-CoA and citric acid levels in these mutants, concomitant with diminished vegetative growth, decreased pigmentation, reduced asexual conidiogenesis, and delayed conidial germination. Exogenous addition of acetate repaired the defects of acl-deficient strains in growth and conidial germination but not pigmentation and conidiogenesis. We demonstrate that both Acl1 and Acl2 subunits are required to form a functional ATP-citrate lyase in A. niger. First, deletion of acl1 or/and acl2 resulted in similar defects in growth and development. Second, enzyme activity assays revealed that loss of either acl1 or acl2 gene resulted in loss of ATP-citrate lyase activity. Third, in vitro enzyme assays using bacterially expressed 6His-tagged Acl protein revealed that only the complex of Acl1 and Acl2 showed ATP-citrate lyase activity, no enzyme activities were detected with the individual protein. Fourth, EGFP-Acl1 and mCherry-Acl2 proteins were co-localized in the cytosol. Thus, acl1 and acl2 coordinately modulate the cytoplasmic acetyl-CoA levels to regulate growth, development, and citric acid synthesis in A. niger.
    Type of Medium: Online Resource
    ISSN: 1476-5535 , 1367-5435
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2014
    detail.hit.zdb_id: 1482484-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2015
    In:  Cerebral Cortex Vol. 25, No. 2 ( 2015-02), p. 496-506
    In: Cerebral Cortex, Oxford University Press (OUP), Vol. 25, No. 2 ( 2015-02), p. 496-506
    Type of Medium: Online Resource
    ISSN: 1460-2199 , 1047-3211
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 1483485-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...