GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (14)
  • 1
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 514, No. 4 ( 2022-07-07), p. 5035-5055
    Abstract: The star formation efficiency (SFE) has been shown to vary across different environments, particularly within galactic starbursts and deep within the bulges of galaxies. Various quenching mechanisms may be responsible, ranging from galactic dynamics to feedback from active galactic nuclei (AGNs). Here, we use spatially resolved observations of warm ionized gas emission lines (Hβ, [O iii] λλ4959,5007, [N ii] λλ6548,6583, Hα and [S ii] λλ6716,6731) from the imaging Fourier transform spectrograph SITELLE at the Canada–France–Hawaii Telescope (CFHT) and cold molecular gas (12CO(2-1)) from the Atacama Large Millimeter/sub-millimeter Array (ALMA) to study the SFE in the bulge of the AGN-host galaxy NGC 3169. After distinguishing star-forming regions from AGN-ionized regions using emission-line ratio diagnostics, we measure spatially resolved molecular gas depletion times (τdep ≡1/SFE) with a spatial resolution of ≈100 pc within a galactocentric radius of 1.8 kpc. We identify a star-forming ring located at radii 1.25 ± 0.6 kpc with an average τdep of 0.3 Gyr. At radii & lt;0.9 kpc, however, the molecular gas surface densities and depletion times increase with decreasing radius, the latter reaching approximately 2.3 Gyr at a radius ≈500 pc. Based on analyses of the gas kinematics and comparisons with simulations, we identify AGN feedback, bulge morphology and dynamics as the possible causes of the radial profile of SFE observed in the central region of NGC 3169.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Monthly Notices of the Royal Astronomical Society Vol. 518, No. 1 ( 2022-11-12), p. 87-92
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 518, No. 1 ( 2022-11-12), p. 87-92
    Abstract: We investigate archival Hubble Space Telescope ACS/SBC F140LP observations of NGC 1399 to search for evidence of multiple stellar populations in extragalactic globular clusters. Enhanced far-ultraviolet (FUV) populations are thought to be indicators of He-enhanced second generation populations in globular clusters, specifically extreme/blue horizontal branch stars. Out of 149 globular clusters in the field of view, 58 have FUV counterparts with magnitudes brighter than 28.5. Six of these FUV-detected globular clusters are also detected in X-rays, including one ultraluminous X-ray source (LX & gt; 1039 erg/s). While optically bright clusters corresponded to brighter FUV counterparts, we observe FUV emission from both metal-rich and metal-poor clusters, which implies that the FUV excess is not dependent on optical colour. We also find no evidence that the cluster size influences the FUV emission. The clusters with X-ray emission are not unusually FUV bright, which suggests that even the ultraluminous X-ray source does not provide significant FUV contributions. NGC 1399 is only the fourth galaxy to have its globular cluster system probed for evidence of FUV-enhanced populations, and we compare these clusters to previous studies of the Milky Way, M31, M87, and the brightest cluster in M81. These sources indicate that many globular clusters likely host extreme HB stars and/or second generation stars, and highlight the need for more complete FUV observations of extragalactic globular cluster systems.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 520, No. 3 ( 2023-02-15), p. 3436-3442
    Abstract: SMC X-1 is a high-mass X-ray binary showing superorbital modulation with an unstable period. Previous monitoring shows three excursion events in 1996–1998, 2005–2007, and 2014–2016. The superorbital period drifts from ≳60 to ≲40 d and then evolves back during an excursion. Here, we report a new excursion event of SMC X-1 in 2020–2021, indicating that the superorbital modulation has an unpredictable, chaotic nature. We trace the spin-period evolution and find that the spin-up rate accelerated 1 yr before the onset of this new excursion, which suggests a possible inside-out process connecting the spin-up acceleration and the superorbital excursion. This results in a deviation of the spin-period residual, similar to the behaviour of the first excursion in 1996–1998. In further analysis of the pulse profile evolution, we find that the pulsed fraction shows a long-term evolution and may be connected to the superorbital excursion. These discoveries deepen the mystery of SMC X-1 because they cannot be solely interpreted by the warped-disc model. Upcoming pointed observations and theoretical studies may improve our understanding of the detailed accretion mechanisms taking place.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Monthly Notices of the Royal Astronomical Society Vol. 520, No. 1 ( 2023-01-28), p. 1-13
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 520, No. 1 ( 2023-01-28), p. 1-13
    Abstract: Gravitational wave (GW) standard sirens may resolve the Hubble tension, provided that standard siren inference of H0 is free from systematic biases. However, standard sirens from binary neutron star (BNS) mergers suffer from two sources of systematic bias, one arising from the anisotropy of GW emission, and the other from the anisotropy of electromagnetic (EM) emission from the kilonova. For an observed sample of BNS mergers, the traditional Bayesian approach to debiasing involves the direct computation of the detection likelihood. This is infeasible for large samples of detected BNS merger due to the high dimensionality of the parameter space governing merger detection. In this study, we bypass this computation by fitting the Hubble constant to forward simulations of the observed GW and EM data under a simulation-based inference (SBI) framework using marginal neural ratio estimation. A key innovation of our method is the inclusion of BNS mergers that were only detected in GW, which allows for estimation of the bias introduced by EM anisotropy. Our method corrects for $\sim 90{{\ \rm per\ cent}}$ of the bias in the inferred value of H0 when telescope follow-up observations of BNS mergers have extensive tiling of the merger localization region, using known telescope sensitivities and assuming a model of kilonova emission. Our SBI-based method thus enables a debiased inference of the Hubble constant of BNS mergers, including both mergers with detected EM counterparts and those without.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Monthly Notices of the Royal Astronomical Society Vol. 504, No. 1 ( 2021-04-26), p. 1545-1554
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 504, No. 1 ( 2021-04-26), p. 1545-1554
    Abstract: We have identified three ultraluminous X-ray sources (ULXs) hosted by globular clusters (GCs) within NGC 1316’s stellar system. These discoveries bring the total number of known ULXs in GCs up to 20. We find that the X-ray spectra of the three new sources do not deviate from the established pattern of spectral behaviour of the other known GC ULXs. The consistency of the X-ray spectral behaviour for these sources points to multiple paths of formation and evolution mechanisms for these rare and unique sources. Using the now larger sample of GC ULXs, we compare the optical properties of the entire known population of GC ULXs to other GCs across five galaxies and find that the properties of clusters that host ULXs are quite different from the typical clusters. Lastly, any trend of GC ULXs being preferentially hosted by metal-rich clusters is not strongly significant in this sample.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Monthly Notices of the Royal Astronomical Society Vol. 508, No. 3 ( 2021-10-22), p. 4008-4016
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 508, No. 3 ( 2021-10-22), p. 4008-4016
    Abstract: We investigate a sample of seven edge-on spiral galaxies using Chandra observations. Edge-on spiral galaxies allow us to clearly separate source associated with their star-forming regions versus the outer edges of the system, offering a clear advantage over other systems. We uncover a number of X-ray point sources across these galaxies, and after eliminating contaminating foreground and background sources, we identify 12 candidate ultraluminous X-ray sources (ULXs). All of these sources are projected on to the central regions, implying that the majority of ULXs in this sample of spiral galaxies are disc/bulge, and thus not halo sources. This also includes two transient ULXs, which may be long-duration transients and low-mass X-ray binaries. This finding illustrates the need for further studies of transient ULXs.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 514, No. 4 ( 2022-07-09), p. 5457-5464
    Abstract: SMC X-1 has exhibited three superorbital period excursions since the onset of X-ray monitoring beginning with the Rossi X-ray Timing Explorer's launch in 1995. TheNeutron star Interior Composition Explorer has recently probed a fourth observed excursion beginning in 2021 with our programme monitoring observations of SMC X-1’s excursions (moose). These sensitive new moose data probe different superorbital periods and phases within them. Spectral fits to the high-state continuum during 2021 April to 2022 January show that the intrinsic spectral shapes are characterized by a soft (kT ∼ 0.19 keV) disc component and a hard (Γ ∼ 0.7) power-law tail. When the 2021–2022 NICER observations, taken during an excursion, are compared to 2016 XMM–Newton observations (outside of an excursion), we find little evidence for intrinsic spectral variability across the high states, but find evidence for a & gt;3σ change in the absorption, although we caution that there may be calibration differences between the two instruments. Thus, over different lengths of superorbital periods, we see little evidence for intrinsic spectral changes in the high state. Upcoming studies of the pulse profiles may shed light on the mechanism behind the excursions.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2018
    In:  Monthly Notices of the Royal Astronomical Society Vol. 479, No. 2 ( 2018-09-11), p. 2834-2852
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 479, No. 2 ( 2018-09-11), p. 2834-2852
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Monthly Notices of the Royal Astronomical Society Vol. 524, No. 3 ( 2023-07-24), p. 3662-3670
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 524, No. 3 ( 2023-07-24), p. 3662-3670
    Abstract: Utilizing archival Chandra X-ray Observatory data and Hubble Space Telescope globular cluster catalogues, we probe the time-domain properties of the low mass X-ray binary population in the elliptical galaxy NGC 4261. Of the 98 unique X-ray sources identified in this study, 62 sources are within the optical field of view and, of those, 33 per cent are aligned with an optical cluster counterpart. We find twenty X-ray sources coincident with globular clusters; two are previously discovered ultra-luminous X-ray sources (ULXs) and eighteen are low mass X-ray binaries (GCLMXBs) with LX & lt; 1039 erg s−1. ULXs are a heterogeneous class of extremely bright X-ray binaries (LX & gt; 1039 erg s−1) and ULXs located in globular clusters (GCULXs) and may be indicators of black holes. Identifying these unusually X-ray bright sources and measuring their optical properties can provide valuable constraints on the progenitors of gravitational wave sources. We compare observations of these sources to the twenty previously studied GCULXs from five other early-type galaxies, and find that GCULXs in NGC 4261 are of similar colour and luminosity and do not significantly deviate from the rest of the sample in terms of distance from the galaxy centre or X-ray luminosity. Both the GCULX and GCLMXB populations of NGC 4261 show long-term variability; the former may have implications for fast radio bursts originating in globular clusters and the latter will likely introduce additional scatter into the low mass end of GCLMXB X-ray luminosity functions.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Monthly Notices of the Royal Astronomical Society Vol. 518, No. 3 ( 2022-11-30), p. 3386-3396
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 518, No. 3 ( 2022-11-30), p. 3386-3396
    Abstract: Ultraluminous X-ray sources (ULXs) in globular clusters (GCs) are low-mass X-ray binaries that achieve high X-ray luminosities through a currently uncertain accretion mechanism. Using archival Chandra and Hubble Space Telescope observations, we perform a volume-limited search (≲70 Mpc) of 21 of the most massive ($\gt 10^{11.5} \, \mathrm{M}_\odot$) early-type galaxies to identify ULXs hosted by GC candidates. We find a total of 34 ULX candidates above the expected background within five times the effective radius of each galaxy, with 10 of these ($\sim 29.4{{\ \rm per\ cent}}$) potentially hosted by a GC. A comparison of the spatial and luminosity distributions of these new candidate GC ULXs with previously identified GC ULXs shows that they are similar: both samples peak at LX ∼ a few × 1039 erg s−1 and are typically located within a few effective radii of their host galaxies.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...