GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Biological Journal of the Linnean Society, Oxford University Press (OUP), Vol. 133, No. 3 ( 2021-06-28), p. 766-778
    Abstract: The geographical distributions of species associated with European temperate broadleaf forests have been significantly influenced by glacial–interglacial cycles. During glacial periods, these species persisted in Mediterranean and extra-Mediterranean refugia and later, during interglacial periods, expanded northwards. The widespread saproxylic beetle Bolitophagus reticulatus depends closely on European temperate broadleaf forests. It usually develops in the tinder fungus Fomes fomentarius, a major decomposer of broadleaf-wood. We sampled B. reticulatus in sporocarps from European beech (Fagus sylvatica) and Oriental beech (Fagus orientalis) across Europe and the Caucasus region. We analysed mitochondrial gene sequences (cox1, cox2, cob) and 17 microsatellites to reconstruct the geographical distribution of glacial refugia and postglacial recolonization pathways. We found only marginal genetic differentiation of B. reticulatus, except for a significant split between populations of the Caucasus region and Europe. This indicates the existence of past refugia south of the Great Caucasus, and a contact zone with European populations in the Crimean region. Further potential refugia might have been located at the foothills of the Pyrenees and in the Balkan region. Our genetic data suggest a phalanx-wise recolonization of Europe, a reflection of the high mobility of B. reticulatus.
    Type of Medium: Online Resource
    ISSN: 0024-4066 , 1095-8312
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1461865-5
    detail.hit.zdb_id: 220623-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2019
    In:  Journal of Economic Entomology Vol. 112, No. 6 ( 2019-12-09), p. 2686-2694
    In: Journal of Economic Entomology, Oxford University Press (OUP), Vol. 112, No. 6 ( 2019-12-09), p. 2686-2694
    Abstract: Large-scale field studies on the ecological effects of aerial forest spraying often face methodological challenges, such as insufficient funding, difficult logistics, and legal obstacles. The resulting routine use of underpowered designs could lead to a systematic underestimation of insecticide effects on nontarget arthropod communities. We tested the use of an Unmanned Aerial Vehicles (UAVs) for experimental insecticide applications at tree level to increase replication in cost-efficient way. We assessed the effects of two forestry insecticides, diflubenzuron (DFB) and tebufenozide (TBF), on the oak defoliator, Thaumetopoea processionea (Linnaeus) (Lepidoptera: Thaumetopoeidae), and on nontarget, tree-living Lepidoptera. Individual trees were sprayed with either insecticide or left unsprayed, in a fully factorial design involving 60 trees. Caterpillars fallen from tree crowns were sampled as a measure of mortality, while caterpillar feeding activity was monitored by collecting frass droppings. Both DFB and TBF led to greater mortality of T. processionea and lower Lepidoptera feeding activity than control levels. TBF caused measurable mortality in nontarget groups, affecting Macrolepidoptera more strongly than Microlepidoptera, while there was no significant side effect of DFB. The high treatment efficacy against the target pest indicates that UAV technology is well-suited for the application of insecticide in forests. We detected distinct responses to different insecticides among nontarget groups and suggest there is an influence of application timing and biological traits in these differences, emphasizing the need for more ecologically orientated risk assessment. UAV-supported designs can be used to link laboratory bioassays and large-scale experiments, allowing for more comprehensive assessments of insecticide effects in forest ecosystems.
    Type of Medium: Online Resource
    ISSN: 0022-0493 , 1938-291X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2477182-X
    detail.hit.zdb_id: 2030999-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2013
    In:  Systematic Biology Vol. 62, No. 3 ( 2013-05-01), p. 499-500
    In: Systematic Biology, Oxford University Press (OUP), Vol. 62, No. 3 ( 2013-05-01), p. 499-500
    Type of Medium: Online Resource
    ISSN: 1076-836X , 1063-5157
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2013
    detail.hit.zdb_id: 1482572-7
    detail.hit.zdb_id: 1123455-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Tree Physiology, Oxford University Press (OUP), Vol. 41, No. 5 ( 2021-05-14), p. 683-696
    Abstract: Since the 1990s the invasive fungus Hymenoscyphus fraxineus has caused severe crown dieback and high mortality rates in Fraxinus excelsior in Europe. In addition to a strong genetic control of tolerance to the fungus, previous studies have found landscape heterogeneity to be an additional driver of variability in the severity of dieback symptoms. However, apart from climatic conditions related to heat and humidity influencing fungal infection success, the mechanistic understanding of why smaller or slower-growing trees are more susceptible to dieback remains less well understood. Here, we analyzed three stands in Switzerland with a unique setting of 8 years of data availability of intra-annual diameter growth and annual crown health assessments. We complemented this by ring width and quantitative wood anatomical measurements extending back before the monitoring started to investigate if wood anatomical adjustments can help better explain the size-related dieback phenomenon. We found that slower-growing trees or trees with smaller crowns already before the arrival of the fungus were more susceptible to dieback and mortality. Defoliation directly reduced growth as well as maximum earlywood vessel size, and the positive relationship between vessel size and growth rate caused a positive feedback amplifying and accelerating crown dieback. Measured non-structural carbohydrate (NSC) concentrations in the outermost five rings did not significantly vary between healthy and weakened trees, which translate into large differences in absolute available amount of NSCs. Thus, we hypothesize that a lack of NSCs (mainly sugars) leads to lower turgor pressure and smaller earlywood vessels in the following year. This might impede efficient water transport and photosynthesis, and be responsible for stronger symptoms of dieback and higher mortality rates in smaller and slower-growing trees.
    Type of Medium: Online Resource
    ISSN: 1758-4469
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1473475-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...