GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Monthly Notices of the Royal Astronomical Society Vol. 509, No. 3 ( 2021-11-25), p. 3113-3118
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 509, No. 3 ( 2021-11-25), p. 3113-3118
    Abstract: Astronomical intensity interferometry enables quantitative measurements of the source geometry by measuring the photon fluxes in individual telescopes and correlating them, rather than correlating the electromagnetic waves’ amplitudes. This simplifies the realization of large telescope baselines and high angular resolutions. Imaging Atmospheric Cherenkov Telescopes (IACTs), intended to detect the optical emission of γ-ray-induced air showers, are excellent candidates to perform intensity correlations in the optical at reasonable signal-to-noise ratios. The detected coherence time is on the scale of (10−12)–(10−15) s – depending on the optical bandwidth of the measurement – which challenges the detection system to work in a stable and accurate way. We developed an intensity interferometry set-up applicable to IACTs, which measures the photocurrents from photomultipliers and correlates them offline, and as such is designed to handle the very large photon rates provided by the telescopes. We present measurements in the lab simulating starlight using a xenon lamp and measured at different degrees of temporal and spatial coherence. Necessary calibration procedures are described with the goal of understanding the measurements quantitatively. Measured coherence times between $5\,$femtoseconds (corresponding signal-to-background ratio 5 × 10−7) and $110\,$femtoseconds (signal-to-background ratio 10−5) are in good agreement with expectations, and so are the noise levels in the correlations, reaching down to 6 × 10−8, after measurements between $30\,$min and $1\,$h.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 462, No. 2 ( 2016-10-21), p. 1382-1392
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2016
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Monthly Notices of the Royal Astronomical Society
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP)
    Abstract: Intensity interferometry for astrophysical observations has gained increasing interest in the last decade. The method of correlating photon fluxes at different telescopes for high resolution astronomy without access to the phase of the incoming light is insensitive to atmospheric turbulence and doesn’t require high-precision optical path control. The necessary large collection areas can be provided by Imaging Atmospheric Cherenkov Telescopes. Implementation of intensity interferometers to existing telescope systems such as VERITAS and MAGIC has proven to be successful for high-resolution imaging of stars. In April 2022 we equipped two telescopes of the H.E.S.S. array in Namibia with an intensity interferometry setup to measure southern sky stars and star systems during the bright moon period. We mounted an external optical system to the lid of the telescope cameras, which splits the incoming light and feeds it into two photomultipliers in order to measure the zero-baseline correlation within one telescope in addition to the cross correlation between the telescopes. The optical elements are motorised, which enables live correction of tracking inaccuracies of the telescopes. During the campaign we measured the spatial correlation curves and thereby the angular diameters of λ Sco (Shaula) and σ Sgr (Nunki), while we also performed systematic studies of our interferometer using the multiple star system of α Cru (Acrux).
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Monthly Notices of the Royal Astronomical Society Vol. 512, No. 2 ( 2022-03-23), p. 1722-1729
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 512, No. 2 ( 2022-03-23), p. 1722-1729
    Abstract: Stellar intensity interferometers correlate photons within their coherence time and could overcome the baseline limitations of existing amplitude interferometers. Intensity interferometers do not rely on phase coherence of the optical elements and thus function without high-grade optics and light combining delay lines. However, the coherence time of starlight observed with realistic optical filter bandwidths ($\gt {0.1}\, {\rm nm}$) is usually much smaller than the time resolution of the detection system ($\gt {10}\, {\rm ps}$), resulting in a greatly reduced correlation signal. Reaching high signal-to-noise ratio in a reasonably short measurement time can be achieved in different ways: either by increasing the time resolution, which increases the correlation signal height, or by increasing the photon rate, which decreases statistical uncertainties of the measurement. We present laboratory measurements employing both approaches and directly compare them in terms of signal-to-noise ratio. A high-time-resolution interferometry setup designed for small-to-intermediate-sized optical telescopes and thus lower photon rates (diameters $\lt \,$some metres) is compared to a setup capable of measuring high photon rates, which is planned to be installed at Cherenkov telescopes with dish diameters of $\gt {10}\, {\rm m}$. We use a xenon lamp as a common light source simulating starlight. Both setups measure the expected correlation signal and work at the expected shot-noise limit of statistical uncertainties for measurement times between 10 min and 23 h. We discuss the quantitative differences in the measurement results and give an overview of suitable operation regimes for each of the interferometer concepts.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...