GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cardiovascular Research, Oxford University Press (OUP), Vol. 118, No. 4 ( 2022-03-16), p. 1088-1102
    Abstract: Coronary artery disease (CAD) has a strong genetic predisposition. However, despite substantial discoveries made by genome-wide association studies (GWAS), a large proportion of heritability awaits identification. Non-additive genetic effects might be responsible for part of the unaccounted genetic variance. Here, we attempted a proof-of-concept study to identify non-additive genetic effects, namely epistatic interactions, associated with CAD. Methods and results We tested for epistatic interactions in 10 CAD case–control studies and UK Biobank with focus on 8068 SNPs at 56 loci with known associations with CAD risk. We identified a SNP pair located in cis at the LPA locus, rs1800769 and rs9458001, to be jointly associated with risk for CAD [odds ratio (OR) = 1.37, P = 1.07 × 10−11], peripheral arterial disease (OR = 1.22, P = 2.32 × 10−4), aortic stenosis (OR = 1.47, P = 6.95 × 10−7), hepatic lipoprotein(a) (Lp(a)) transcript levels (beta = 0.39, P = 1.41 × 10−8), and Lp(a) serum levels (beta = 0.58, P = 8.7 × 10−32), while individual SNPs displayed no association. Further exploration of the LPA locus revealed a strong dependency of these associations on a rare variant, rs140570886, that was previously associated with Lp(a) levels. We confirmed increased CAD risk for heterozygous (relative OR = 1.46, P = 9.97 × 10−32) and individuals homozygous for the minor allele (relative OR = 1.77, P = 0.09) of rs140570886. Using forward model selection, we also show that epistatic interactions between rs140570886, rs9458001, and rs1800769 modulate the effects of the rs140570886 risk allele. Conclusions These results demonstrate the feasibility of a large-scale knowledge-based epistasis scan and provide rare evidence of an epistatic interaction in a complex human disease. We were directed to a variant (rs140570886) influencing risk through additive genetic as well as epistatic effects. In summary, this study provides deeper insights into the genetic architecture of a locus important for cardiovascular diseases.
    Type of Medium: Online Resource
    ISSN: 0008-6363 , 1755-3245
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1499917-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Schizophrenia Bulletin, Oxford University Press (OUP), Vol. 46, No. Supplement_1 ( 2020-05-18), p. S35-S36
    Abstract: While single (genetic and environmental) risk factors for psychosis have been studied for their impact on brain structure and function, there is little understanding of how they interact to generate psychosis liability on the neural level. Direct associations between cumulative genetic risk scores and risk phenotypes are often weak, and analyses of G×E interactions are scarce. We developed and tested a multivariate model, in which the effects of cumulative environmental and genetic risk on a dimensional phenotype are mediated by brain structural variation. Methods In a data set of 440 non-clinical subjects, we tested a moderated mediation model with an interaction of an environmental (ERS) and a polygenic risk score (PRS) for schizophrenia, impacting on the subclinical psychosis spectrum phenotype schizotypy. We propose this effect to be mediated by grey matter volume variation, derived from voxel-based morphometry. In addition, cognitive function (CF) was considered as a potential moderator. Results Firstly, in a whole-brain analysis, we detected a significant interaction effect of PRS×ERS in a cluster (k=910, x/y/z=-4/-50/33, p=0.024 FWE cluster-level corrected) including the left precuneus (Pc, 64%) and posterior cingulate gyrus (pcG, 33%). Secondly, cluster values were extracted and entered into a multivariate moderated mediation model. This model was significant, showing that Pc/pcG volume mediated the impact of a PRS×ERS interaction on positive schizotypy (R2=10.91%, p=4.9×10–5). In predicting Pc/pcG variation (R2=51.69%), neither PRS (b=0.638, p=0.830) nor ERS had a main effect on grey matter variation, but their interaction was significant (b=-3.13, p=0.002): The intensity and direction of the PRS effect is moderated by the level of ERS, with a positive slope for low ERS (i.e., low environmental risk), and a negative slope for high ERS. In predicting positive schizotypy, the direct effects of PRS (b=6.116, p=0.477) and ERS (b=0.006, p=0.068) were not significant. However, we demonstrate an indirect effect through brain structural variation, showing a significant mediation (index=0.223, bootstrapped confidence interval 0.004–0.542). Cluster variation had a significant main effect on positive schizotypy (b=-0.277, p=0.049), but was modulated by the level of cognitive function, with a positive slope for low CF, and a negative slope for high CF, showing a second significant interaction (b=-0.070, p=0.027). Discussion Our finding is the first to integrate polygenic and poly-environmental markers with MRI parameters to demonstrate that the interaction of these cumulated risk factors leads to the emergence of subclinical symptoms through changes in brain structure. Furthermore, our model confirms cognition as a protective factor, indicating that above-average levels of cognitive function can compensate for dysfunctional processes that arise from altered neurodevelopment. Such compensatory mechanisms are crucial for understanding resilience, explaining high (positive) symptom load in unaffected individuals. Conventional diathesis-stress models propose increased vulnerability specifically to adverse events – our model extends this to suggest an inverted effect for high PRS and low ERS subjects. Under favourable environmental conditions, an increased genetic load might paradoxically result in low psychopathology outcomes or gain of function, supporting the notion of genes associated with schizophrenia as “plasticity genes” rather than simple risk factors. In sum, the present study provides proof for a multivariate model predicting the impact of genetic and environmental risk on a psychosis risk phenotype, extendable to other clinical spectra.
    Type of Medium: Online Resource
    ISSN: 0586-7614 , 1745-1701
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2180196-4
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Human Molecular Genetics, Oxford University Press (OUP), Vol. 31, No. 5 ( 2022-03-03), p. 792-802
    Abstract: The protein α-Klotho acts as transmembrane co-receptor for fibroblast growth factor 23 (FGF23) and is a key regulator of phosphate homeostasis. However, α-Klotho also exists in a circulating form, with pleiotropic, but incompletely understood functions and regulation. Therefore, we undertook a genome-wide association study (GWAS) meta-analysis followed by Mendelian randomization (MR) of circulating α-Klotho levels. Plasma α-Klotho levels were measured by enzyme-linked immunosorbent assay (ELISA) in the Ludwigshafen Risk and Cardiovascular Health and Avon Longitudinal Study of Parents and Children (mothers) cohorts, followed by a GWAS meta-analysis in 4376 individuals across the two cohorts. Six signals at five loci were associated with circulating α-Klotho levels at genome-wide significance (P  & lt; 5 × 10−8), namely ABO, KL, FGFR1, and two post-translational modification genes, B4GALNT3 and CHST9. Together, these loci explained & gt;9% of the variation in circulating α-Klotho levels. MR analyses revealed no causal relationships between α-Klotho and renal function, FGF23-dependent factors such as vitamin D and phosphate levels, or bone mineral density. The screening for genetic correlations with other phenotypes followed by targeted MR suggested causal effects of liability of Crohn’s disease risk [Inverse variance weighted (IVW) beta = 0.059 (95% confidence interval 0.026, 0.093)] and low-density lipoprotein cholesterol levels [−0.198 (−0.332, −0.063)] on α-Klotho. Our GWAS findings suggest that two enzymes involved in post-translational modification, B4GALNT3 and CHST9, contribute to genetic influences on α-Klotho levels, presumably by affecting protein turnover and stability. Subsequent evidence from MR analyses on α-Klotho levels suggest regulation by mechanisms besides phosphate-homeostasis and raise the possibility of cross-talk with FGF19- and FGF21-dependent pathways, respectively. Significance statement: α-Klotho as a transmembrane protein is well investigated along the endocrine FGF23-α-Klotho pathway. However, the role of the circulating form of α-Klotho, which is generated by cleavage of transmembrane α-Klotho, remains incompletely understood. Genetic analyses might help to elucidate novel regulatory and functional mechanisms. The identification of genetic factors related to circulating α-Klotho further enables MR to examine causal relationships with other factors. The findings from the first GWAS meta-analysis of circulating α-Klotho levels identified six genome-wide significant signals across five genes. Given the function of two of the genes identified, B4GALNT3 and CHST9, it is tempting to speculate that post-translational modification significantly contributes to genetic influences on α-Klotho levels, presumably by affecting protein turnover and stability.
    Type of Medium: Online Resource
    ISSN: 0964-6906 , 1460-2083
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1474816-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...