GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (15)
Material
Publisher
  • Oxford University Press (OUP)  (15)
Language
Years
Subjects(RVK)
  • 11
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Nucleic Acids Research Vol. 48, No. W1 ( 2020-07-02), p. W436-W448
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 48, No. W1 ( 2020-07-02), p. W436-W448
    Abstract: Biological processes (like microbial growth  &  physiological response) are usually dynamic and require the monitoring of metabolic variation at different time-points. Moreover, there is clear shift from case-control (N=2) study to multi-class (N & gt;2) problem in current metabolomics, which is crucial for revealing the mechanisms underlying certain physiological process, disease metastasis, etc. These time-course and multi-class metabolomics have attracted great attention, and data normalization is essential for removing unwanted biological/experimental variations in these studies. However, no tool (including NOREVA 1.0 focusing only on case-control studies) is available for effectively assessing the performance of normalization method on time-course/multi-class metabolomic data. Thus, NOREVA was updated to version 2.0 by (i) realizing normalization and evaluation of both time-course and multi-class metabolomic data, (ii) integrating 144 normalization methods of a recently proposed combination strategy and (iii) identifying the well-performing methods by comprehensively assessing the largest set of normalizations (168 in total, significantly larger than those 24 in NOREVA 1.0). The significance of this update was extensively validated by case studies on benchmark datasets. All in all, NOREVA 2.0 is distinguished for its capability in identifying well-performing normalization method(s) for time-course and multi-class metabolomics, which makes it an indispensable complement to other available tools. NOREVA can be accessed at https://idrblab.org/noreva/.
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Nucleic Acids Research Vol. 51, No. W1 ( 2023-07-05), p. W509-W519
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 51, No. W1 ( 2023-07-05), p. W509-W519
    Abstract: Ribonucleic acids (RNAs) involve in various physiological/pathological processes by interacting with proteins, compounds, and other RNAs. A variety of powerful computational methods have been developed to predict such valuable interactions. However, all these methods rely heavily on the ‘digitalization’ (also known as ‘encoding’) of RNA-associated interacting pairs into a computer-recognizable descriptor. In other words, it is urgently needed to have a powerful tool that can not only represent each interacting partner but also integrate both partners into a computer-recognizable interaction. Herein, RNAincoder (deep learning-based encoder for RNA-associated interactions) was therefore proposed to (a) provide a comprehensive collection of RNA encoding features, (b) realize the representation of any RNA-associated interaction based on a well-established deep learning-based embedding strategy and (c) enable large-scale scanning of all possible feature combinations to identify the one of optimal performance in RNA-associated interaction prediction. The effectiveness of RNAincoder was extensively validated by case studies on benchmark datasets. All in all, RNAincoder is distinguished for its capability in providing a more accurate representation of RNA-associated interactions, which makes it an indispensable complement to other available tools. RNAincoder can be accessed at https://idrblab.org/rnaincoder/
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 51, No. 21 ( 2023-11-27), p. e110-e110
    Abstract: RNAs play essential roles in diverse physiological and pathological processes by interacting with other molecules (RNA/protein/compound), and various computational methods are available for identifying these interactions. However, the encoding features provided by existing methods are limited and the existing tools does not offer an effective way to integrate the interacting partners. In this study, a task-specific encoding algorithm for RNAs and RNA-associated interactions was therefore developed. This new algorithm was unique in (a) realizing comprehensive RNA feature encoding by introducing a great many of novel features and (b) enabling task-specific integration of interacting partners using convolutional autoencoder-directed feature embedding. Compared with existing methods/tools, this novel algorithm demonstrated superior performances in diverse benchmark testing studies. This algorithm together with its source code could be readily accessed by all user at: https://idrblab.org/corain/ and https://github.com/idrblab/corain/.
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2016
    In:  G3 Genes|Genomes|Genetics Vol. 6, No. 7 ( 2016-07-01), p. 2013-2021
    In: G3 Genes|Genomes|Genetics, Oxford University Press (OUP), Vol. 6, No. 7 ( 2016-07-01), p. 2013-2021
    Abstract: OsWUS has recently been shown to be a transcription factor gene critical for tiller development and fertility in rice. The OsWUS protein consists of three conserved structural domains, but their biological functions are still unclear. We discovered a new rice mutant resulting from tissue culture, which hardly produced tillers and exhibited complete female sterility. The male and female floral organs of the mutant were morphologically indistinguishable from those of the wild type. We named the mutant srt1 for completely sterile and reduced tillering 1. Map-based cloning revealed that the mutant phenotypes were caused by a mutation in OsWUS. Compared with the two previously reported null allelic mutants of OsWUS (tab1-1 and moc3-1), which could produce partial N-terminal peptides of OsWUS, the srt1 protein contained a deletion of only seven amino acids within the conserved homeobox domain of OsWUS. However, the mutant phenotypes (monoculm and female sterility) displayed in srt1 were as typical and severe as those in tab1-1 and moc3-1. This indicates that the homeobox domain of SRT1 is essential for the regulation of tillering and sterility in rice. In addition, srt1 showed an opposite effect on panicle development to that of the two null allelic mutants, implying that the srt1 protein might still have partial or even new functions on panicle development. The results of this study suggest that the homeobox domain is pivotal for OsWUS function.
    Type of Medium: Online Resource
    ISSN: 2160-1836
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2016
    detail.hit.zdb_id: 2629978-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    In: Life Medicine, Oxford University Press (OUP)
    Abstract: Cardiac aging constitutes a significant risk factor for cardiovascular diseases prevalent among the elderly population. Urgent attention is required to prioritize preventive and management strategies for age-related cardiovascular conditions to safeguard the well-being of elderly individuals. In response to this critical challenge, the Aging Biomarker Consortium (ABC) of China has formulated an expert consensus on cardiac aging biomarkers. This consensus draws upon the latest scientific literature and clinical expertise to provide a comprehensive assessment of biomarkers associated with cardiac aging. Furthermore, it presents a standardized methodology for characterizing biomarkers across three dimensions: functional, structural, and humoral. The functional dimension encompasses a broad spectrum of markers that reflect diastolic and systolic functions, sinus node pacing, neuroendocrine secretion, coronary microcirculation, and cardiac metabolism. The structural domain emphasizes imaging markers relevant to concentric cardiac remodeling, coronary artery calcification, and epicardial fat deposition. The humoral aspect underscores various systemic (N) and heart-specific (X) markers, including endocrine hormones, cytokines, and other plasma metabolites. The ABC’s primary objective is to establish a robust foundation for assessing cardiac aging, thereby furnishing a dependable reference for clinical applications and future research endeavors. This aims to contribute significantly to the enhancement of cardiovascular health and overall well-being among elderly individuals.
    Type of Medium: Online Resource
    ISSN: 2755-1733
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 3158317-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...