GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (2)
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  National Science Review Vol. 7, No. 7 ( 2020-07-01), p. 1190-1197
    In: National Science Review, Oxford University Press (OUP), Vol. 7, No. 7 ( 2020-07-01), p. 1190-1197
    Abstract: Observational analysis shows that there is a predominant global-scale multidecadal variability (GMV) of sea-surface temperature (SST). Its horizontal pattern resembles that of the interdecadal Pacific oscillation (IPO) in the Pacific and the Atlantic multidecadal oscillation (AMO) in the Atlantic Ocean, which could affect global precipitation and temperature over the globe. Here, we demonstrate that the GMV could be driven by the AMO through atmospheric teleconnections and atmosphere–ocean coupling processes. Observations reveal a strong negative correlation when AMO leads GMV by approximately 4–8 years. Pacemaker experiments using a climate model driven by observed AMO signals reveal that the tropical Atlantic warm SST anomalies of AMO initiate anomalous cooling in the equatorial central-eastern Pacific through atmospheric teleconnections. Anticyclonic anomalies in the North and South Pacific induce equatorward winds along the coasts of North and South America, contributing to further cooling. The upper-ocean dynamics plays a minor role in GMV formation but contributes to a delayed response of the IPO to the AMO forcing. The possible impact of the GMV on AMO was also tested by prescribing only Pacific SST in the model; however, the model could not reproduce the observed phase relationship between the AMO and the GMV. These results support the hypothesis that the Atlantic Ocean plays a key role in the multidecadal variability of global SST.
    Type of Medium: Online Resource
    ISSN: 2095-5138 , 2053-714X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2745465-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Plant Cell, Oxford University Press (OUP), Vol. 22, No. 6 ( 2010-07-28), p. 1777-1791
    Abstract: Temporal and spatial variation in the levels of and sensitivity to hormones are essential for the development of higher organisms. Traditionally, end-product feedback regulation has been considered as the key mechanism for the achievement of cellular homeostasis. Brassinosteroids (BRs) are plant steroid hormones that are perceived by the cell surface receptor kinase Brassinosteroid Insensitive1. Binding of these hormones to the receptor activates BR signaling and eventually suppresses BR synthesis. This report shows that RAVL1 regulates the expression of the BR receptor. Furthermore, RAVL1 is also required for the expression of the BR biosynthetic genes D2, D11, and BRD1 that are subject to BR negative feedback. Activation by RAVL1 was coordinated via E-box cis-elements in the promoters of the receptor and biosynthetic genes. Also, RAVL1 is necessary for the response of these genes to changes in cellular BR homeostasis. Genetic evidence is presented to strengthen the observation that the primary action of RAVL1 mediates the expression of genes involved in BR signaling and biosynthesis. This study thus describes a regulatory circuit modulating the homeostasis of BR in which RAVL1 ensures the basal activity of both the signaling and the biosynthetic pathways.
    Type of Medium: Online Resource
    ISSN: 1532-298X , 1040-4651
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2010
    detail.hit.zdb_id: 623171-8
    detail.hit.zdb_id: 2004373-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...