GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (1)
  • 1
    Publication Date: 2015-10-19
    Description: The thermal desorption of ammonia (NH 3 ) from single crystal forsterite (010) has been investigated using temperature-programmed desorption. The effect of defects on the desorption process has been probed by the use of a rough cut forsterite surface prepared from the cleaved forsterite sample. Several approaches have been used to extract the desorption energy and pre-exponential factor describing the desorption kinetics. In the sub-monolayer coverage regime, the NH 3 desorption shows a broad distribution of desorption energies, indicating the presence of different adsorption sites, which results in an apparent coverage-dependent desorption energy. This distribution is sensitive to the surface roughness with the cut forsterite surface displaying a significantly broader distribution of desorption energies compared to the cleaved forsterite surface. The cut forsterite surface exhibits sites with desorption energies up to 62.5 kJ mol –1 in comparison to a desorption energy of up to 58.0 kJ mol –1 for the cleaved surface. Multilayer desorption is independent of the nature of the forsterite surface used, with a desorption energy of (25.8 ± 0.9) kJ mol –1 . On astrophysically relevant heating time-scales, the presence of a coverage-dependent desorption energy distribution results in a lengthening of the NH 3 desorption time-scale by 5.9 x 10 4 yr compared to that expected for a single desorption energy. In addition, the presence of a larger number of high-energy adsorption sites on the rougher cut forsterite surface leads to a further lengthening of ca. 7000 yr.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...