GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-14
    Description: Recent advances in high-throughput sequencing technologies have enabled a comprehensive dissection of the cancer genome clarifying a large number of somatic mutations in a wide variety of cancer types. A number of methods have been proposed for mutation calling based on a large amount of sequencing data, which is accomplished in most cases by statistically evaluating the difference in the observed allele frequencies of possible single nucleotide variants between tumours and paired normal samples. However, an accurate detection of mutations remains a challenge under low sequencing depths or tumour contents. To overcome this problem, we propose a novel method, Empirical Bayesian mutation Calling ( https://github.com/friend1ws/EBCall ), for detecting somatic mutations. Unlike previous methods, the proposed method discriminates somatic mutations from sequencing errors based on an empirical Bayesian framework, where the model parameters are estimated using sequencing data from multiple non-paired normal samples. Using 13 whole-exome sequencing data with 87.5–206.3 mean sequencing depths, we demonstrate that our method not only outperforms several existing methods in the calling of mutations with moderate allele frequencies but also enables accurate calling of mutations with low allele frequencies (≤10%) harboured within a minor tumour subpopulation, thus allowing for the deciphering of fine substructures within a tumour specimen.
    Keywords: Polymorphism/mutation detection, Transcriptome Mapping - Monitoring Gene Expression
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-10-29
    Description: Suppression of T-cell growth is an important mechanism for establishment of self-tolerance and prevention of unwanted prolonged immune responses that may cause tissue damage. Although negative selection of potentially self-reactive T cells in the thymus as well as in peripheral tissues has been extensively investigated and well documented, regulatory mechanisms to dampen proliferation of antigen-specific effector T cells in response to antigen stimulation remain largely unknown. Thus, in this work, we focus on the identification of growth suppression mechanisms of antigen-specific effector T cells. In order to address this issue, we investigated the cellular and molecular events in growth suppression of an ovalbumin (OVA)-specific T-cell clone after stimulation with a wide range of OVA-peptide concentrations. We observed that while an optimal dose of peptide leads to cell cycle progression and proliferation, higher doses of peptide reduced cell growth, a phenomenon that was previously termed high-dose suppression. Our analysis of this phenomenon indicated that high-dose suppression is a consequence of cell cycle arrest, but not Fas–Fas ligand-dependent apoptosis or T-cell anergy, and that this growth arrest occurs in S phase, accompanied by reduced expression of CDK2 and cyclin A. Importantly, inhibition of MEK/ERK activation eliminated this growth suppression and cell cycle arrest, while it reduced the proliferative response to optimal antigenic stimulation. These results suggest that cell cycle arrest is the major mechanism regulating antigen-specific effector T-cell expansion, and that the MEK/ERK signaling pathway has both positive and negative effects, depending on the strength of antigenic stimulation.
    Print ISSN: 0953-8178
    Electronic ISSN: 1460-2377
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-01-22
    Description: Aims Provocation tests of coronary artery spasm are useful for the diagnosis of vasospastic angina (VSA). However, these tests are thought to have a potential risk of arrhythmic complications, including ventricular tachycardia (VT), ventricular fibrillation (VF), and brady-arrhythmias. We aimed to elucidate the safety and the clinical implications of the spasm provocation tests in the nationwide multicentre registry study by the Japanese Coronary Spasm Association. Methods and results A total of 1244 VSA patients (M/F, 938/306; median 66 years) who underwent the spasm provocation tests were enrolled from 47 institutes. The primary endpoint was defined as major adverse cardiac events (MACEs). The provocation tests were performed with either acetylcholine (ACh, 57%) or ergonovine (40%). During the provocation tests, VT/VF and brady-arrhythmias developed at a rate of 3.2 and 2.7%, respectively. Overall incidence of arrhythmic complications was 6.8%, a comparable incidence of those during spontaneous angina attack (7.0%). Multivariable logistic regression analysis demonstrated that diffuse right coronary artery spasm ( P 〈 0.01) and the use of ACh ( P 〈 0.05) had a significant correlation with provocation-related VT/VF. During the median follow-up of 32 months, 69 patients (5.5%) reached the primary endpoint. The multivariable Cox proportional hazard model revealed that mixed (focal plus diffuse) type multivessel spasm had an important association with MACEs (adjusted hazard ratio, 2.84; 95% confidence interval, 1.34–6.03; P 〈 0.01), whereas provocation-related arrhythmias did not. Conclusion The spasm provocation tests have an acceptable level of safety and the evaluation of spasm type may provide useful information for the risk prediction of VSA patients.
    Print ISSN: 0195-668X
    Electronic ISSN: 1522-9645
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-20
    Description: : Somatic internal tandem duplications (ITDs) are known to play important roles in cancer pathogenesis. Although recent advances in high-throughput sequencing technologies have enabled genome-wide detection of various types of genomic mutations, including single nucleotide variants, indels and structural variations, only a few studies have focused on ITDs. We have developed an analytical tool called ‘Genomon ITDetector’ for genome-wide detection of somatic ITDs. After evaluating the sensitivity and precision of the proposed approach using synthetic data, we have demonstrated that it can successfully detect not only common ITDs involving FLT3, but also a number of ITDs affecting other putative driver genes in acute myeloid leukemia exome sequencing data. Availability and implementaion: Genomon ITDetector is freely available at https://github.com/ken0-1n/Genomon-ITDetector Contact: kchiba@hgc.jp or yshira@hgc.jp Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-11-26
    Description: Motivation: Identifying somatic changes from tumor and matched normal sequences has become a standard approach in cancer research. More specifically, this requires accurate detection of somatic point mutations with low allele frequencies in impure and heterogeneous cancer samples. Although haplotype phasing information derived by using heterozygous germ line variants near candidate mutations would improve accuracy, no somatic mutation caller that uses such information is currently available. Results: We propose a Bayesian hierarchical method, termed HapMuC, in which power is increased by using available information on heterozygous germ line variants located near candidate mutations. We first constructed two generative models (the mutation model and the error model). In the generative models, we prepared candidate haplotypes, considering a heterozygous germ line variant if available, and the observed reads were realigned to the haplotypes. We then inferred the haplotype frequencies and computed the marginal likelihoods using a variational Bayesian algorithm. Finally, we derived a Bayes factor for evaluating the possibility of the existence of somatic mutations. We also demonstrated that our algorithm has superior specificity and sensitivity compared with existing methods, as determined based on a simulation, the TCGA Mutation Calling Benchmark 4 datasets and data from the COLO-829 cell line. Availability and implementation: The HapMuC source code is available from http://github.com/usuyama/hapmuc . Contact: imoto@ims.u-tokyo.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-11-26
    Description: In addition to TCR signaling, the activation and proliferation of naive T cells require CD28-mediated co-stimulation. Once engaged, CD28 is phosphorylated and can then activate signaling pathways by recruiting molecules to its YMNM motif and two PxxP motifs. In this study, we analyzed the relationship between tyrosine phosphorylation and the co-stimulatory function of CD28 in murine primary CD4 + T cells. Tyrosine phosphorylation is decreased in CD28 where the N-terminal PxxP motif is mutated (nPA). In cells expressing nPA, activation of Akt and functional co-stimulation were decreased. In contrast, where the C-terminal PxxP motif is mutated, tyrosine phosphorylation and activation of the ERK, Akt and NF-B were intact, but proliferation and IL-2 production were decreased. Using the Y 189 to F mutant, we also demonstrated that in naive CD4 + T cells, tyrosine at position 189 in the YMNM motif is critical for both tyrosine phosphorylation and the functional co-stimulatory effects of CD28. This mutation did not affect unfractionated T-cell populations. Overall, our data suggest that CD28 signaling uses tyrosine phosphorylation-dependent and phosphorylation-independent pathways.
    Print ISSN: 0953-8178
    Electronic ISSN: 1460-2377
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-13
    Description: Aims We investigated whether neural crest-derived cardiac resident cells contribute to the restoration of intrinsic adrenergic function following transplantation in mice. Transplanted heart shows partial restoration of cardiac adrenergic activity with time. Both the intrinsic cardiac adrenergic system and extrinsic sympathetic re-innervation contribute to neuronal remodelling in the transplanted heart. Little is known about the origin and function of the intrinsic system in the transplanted heart. Methods and results Heart from the protein 0-Cre/Floxed-Enhanced Green Fluorescent Protein double-transgenic mouse was transplanted onto the abdominal aorta of the non-obese diabetic/severe combined immunodeficient mouse to trace the fate of cardiac resident neural crest-derived cells. Sympathetic nerve fibres, which are predominantly localized to the epicardial surface of the heart, disappeared in the transplanted heart. Intramyocardial neural crest cells increased immediately, while neural crest-derived nucleated tyrosine hydroxylase (TH)-immunoreactive cells increased over 2 weeks following transplantation. The mRNA expression levels of TH, dopamine-β-hydroxylase and phenylethanolamine N -methyltransferase, and the tissue content of catecholamines in the transplanted hearts increased with time in association with an increase in the number of neural crest-derived nucleated TH-immunoreactive cells and tissue nerve growth factor levels. Iodine-123-metaiodobenzylguanidine scintigraphy showed that the uptake ability of transplanted heart for catecholamines also recovered with time. Finally, the chronotropic response to tyramine both in vivo and ex vivo reappeared 2 weeks after transplantation. Conclusion Neural crest-derived adrenergic cells increased following heart transplantation. The restoration of cardiac sympathetic activities in transplanted heart is tightly coupled with an increase in the number of neural crest-derived adrenergic cells.
    Print ISSN: 0008-6363
    Electronic ISSN: 1755-3245
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-27
    Description: Recent years have seen important advances in our understanding of the etiology, biology and genetics of kidney cancer. To summarize important achievements and identify prominent research questions that remain, a workshop was organized by IARC and the US NCI. A series of ‘difficult questions’ were formulated, which should be given future priority in the areas of population, genomic and clinical research.
    Print ISSN: 0923-7534
    Electronic ISSN: 1569-8041
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-01-19
    Description: Although nitric oxide (NO) is an important signaling molecule in bacteria and higher organisms, excessive intracellular NO is highly reactive and dangerous. Therefore, living cells need strict regulation systems for cellular NO homeostasis. Recently, we discovered that Streptomyces coelicolor A3(2) retains the nitrogen oxide cycle (NO 3 – -〉NO 2 – -〉NO-〉NO 3 – ) and nitrite removal system. The nitrogen oxide cycle regulates cellular NO levels, thereby controlling secondary metabolism initiation (red-pigmented antibiotic, RED production) and morphological differentiation. Nitrite induces gene expression in neighboring cells, suggesting another role for this cycle as a producer of transmittable intercellular communication molecules. Here, we demonstrated that ammonium-producing nitrite reductase (NirBD) is involved in regulating NO homeostasis in S. coelicolor A3(2). NirBD was constitutively produced in culture independently of GlnR, a known transcriptional factor. NirBD cleared the accumulated nitrite from the medium. Nir deletion mutants showed increased NO-dependent gene expression at later culture stages, whereas the wild-type M145 showed decreased expression, suggesting that high NO concentration was maintained in the mutant. Moreover, the nir deletion mutant produced more RED than that produced by the wild-type M145. These results suggest that NO 2 – removal by NirBD is important to regulate NO homeostasis and to complete NO signaling in S. coelicolor .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-08-18
    Description: Aims Long QT syndrome (LQTS) is an inheritable and life-threatening disease; however, it is often difficult to determine disease characteristics in sporadic cases with novel mutations, and more precise analysis is necessary for the successful development of evidence-based clinical therapies. This study thus sought to better characterize ion channel cardiac disorders using induced pluripotent stem cells (iPSCs). Methods and results We reprogrammed somatic cells from a patient with sporadic LQTS and from controls, and differentiated them into cardiomyocytes through embryoid body (EB) formation. Electrophysiological analysis of the LQTS-iPSC-derived EBs using a multi-electrode array (MEA) system revealed a markedly prolonged field potential duration (FPD). The IKr blocker E4031 significantly prolonged FPD in control- and LQTS-iPSC-derived EBs and induced frequent severe arrhythmia only in LQTS-iPSC-derived EBs. The IKs blocker chromanol 293B did not prolong FPD in the LQTS-iPSC-derived EBs, but significantly prolonged FPD in the control EBs, suggesting the involvement of IKs disturbance in the patient. Patch-clamp analysis and immunostaining confirmed a dominant-negative role for 1893delC in IKs channels due to a trafficking deficiency in iPSC-derived cardiomyocytes and human embryonic kidney (HEK) cells. Conclusions This study demonstrated that iPSCs could be useful to characterize LQTS disease as well as drug responses in the LQTS patient with a novel mutation. Such analyses may in turn lead to future progress in personalized medicine.
    Print ISSN: 0008-6363
    Electronic ISSN: 1755-3245
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...