GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (3)
  • 1
    Publication Date: 2016-02-12
    Description: The natural biology of Saccharomyces cerevisiae , the best known unicellular model eukaryote, remains poorly documented and understood although recent progress has started to change this situation. Studies carried out recently in the Northern Hemisphere revealed the existence of wild populations associated with oak trees in North America, Asia, and in the Mediterranean region. However, in spite of these advances, the global distribution of natural populations of S. cerevisiae , especially in regions were oaks and other members of the Fagaceae are absent, is not well understood. Here we investigate the occurrence of S. cerevisiae in Brazil, a tropical region where oaks and other Fagaceae are absent. We report a candidate natural habitat of S. cerevisiae in South America and, using whole-genome data, we uncover new lineages that appear to have as closest relatives the wild populations found in North America and Japan. A population structure analysis revealed the penetration of the wine genotype into the wild Brazilian population, a first observation of the impact of domesticated microbe lineages on the genetic structure of wild populations. Unexpectedly, the Brazilian population shows conspicuous evidence of hybridization with an American population of Saccharomyces paradoxus . Introgressions from S. paradoxus were significantly enriched in genes encoding secondary active transmembrane transporters. We hypothesize that hybridization in tropical wild lineages may have facilitated the habitat transition accompanying the colonization of the tropical ecosystem.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-22
    Description: The feeding ecology of Blackfordia virginica was evaluated concurrently with their ecophysiological condition in a temperate estuary. The diet of B. virginica is composed not only of metazooplankton, as commonly observed for other jellyfish species, but also of phytoplankton, ciliates and detritus. This feeding behavior might explain their good nutritional condition and sustainable growth during bloom peaks, when zooplankton abundance has already decreased significantly.
    Print ISSN: 0142-7873
    Electronic ISSN: 1464-3774
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-21
    Description: The morphological variability of freshwater bivalve species, observed between and within river basins, may hamper their correct identification, even by experienced researchers. Classic morphometric measurements, i.e. shell length, height and thickness, or their ratios, are generally insufficient to distinguish populations and/or species. These issues may be overcome using a geometric morphometric method, which allows analysis of the overall shape of the individual, independently of its size. Thus, we aimed to test the usefulness of two geometric morphometric tools, landmarks and sliding semilandmarks, to evaluate the morphological variability of Unio delphinus Spengler, 1783 in three habitats of the Guadiana Basin (SW Iberian Peninsula, Europe): estuary, river and stream. We used 13 landmarks located on the shell interior (at the teeth, muscle scars and pallial line) and 35 sliding semilandmarks for the shell contour. These morphometric analyses showed that the shell shape of U. delphinus differs significantly among different habitats. Estuarine and stream shells are the most disparate (James index = 649.114, permutation P -value 〈0.001) and variability is not related to variations in shell size. The main differences in shell morphology are the following: (1) estuarine shells are more elongate, while riverine shells are more subovate; (2) the anterior curvature at the umbo is steeper in estuarine and riverine shells; (3) estuarine shells have an arched curvature at the ventral part of the shell, which is absent in specimens from the other habitats. Our data suggest that the morphology of U. delphinus shells might be influenced by the water flow characteristics of each habitat, since shells exhibited characteristics that are typically observed in freshwater mussels from lotic and lentic habitats.
    Print ISSN: 0260-1230
    Electronic ISSN: 1464-3766
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...