GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-02-27
    Description: Ocean acidification is an escalating environmental issue and associated changes in the ocean carbonate system have implications for many calcifying organisms. The present study followed the growth of Sepia officinalis from early-stage embryos, through hatching, to 7-week-old juveniles. Responses of cuttlefish to elevated p CO 2 (hypercapnia) were investigated to test the impacts of near-future and extreme ocean acidification conditions on growth, developmental time, oxygen consumption, and yolk utilization as proxies for individual fitness. We further examined gross morphological characteristics of the internal calcareous cuttlebone to determine whether embryonically secreted shell lamellae are impacted by environmental hypercapnia. Embryonic growth was reduced and hatching delayed under elevated p CO 2 , both at environmentally relevant levels (0.14 kPa p CO 2 similar to predicted ocean conditions in 2100) and extreme conditions (0.40 kPa p CO 2 ). Comparing various metrics from control and intermediate treatments generally showed no significant difference in experimental measurements. Yet, results from the high p CO 2 treatment showed significant changes compared with controls and revealed a consistent general trend across the three treatment levels. The proportion of animal mass contributed by the cuttlebone increased in both elevated p CO 2 treatments. Gross cuttlebone morphology was affected under such conditions and cuttlebones of hypercapnic individuals were proportionally shorter. Embryonic shell morphology was maintained consistently in all treatments, despite compounding hypercapnia in the perivitelline fluid; however, post-hatching, hypercapnic animals developed denser cuttlebone laminae in shorter cuttlebones. Juvenile cuttlefish in acidified environments thus experience lower growth and yet increased calcification of their internal shell. The results of this study support recent findings that early cuttlefish life stages are more vulnerable towards hypercapnia than juveniles and adults, which may have negative repercussions on the biological fitness of cuttlefish hatchlings in future oceans.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-14
    Description: To understand how ocean acidification (OA) influences sediment microbial communities, naturally CO 2 -rich sites are increasingly being used as OA analogues. However, the characterization of these naturally CO 2 -rich sites is often limited to OA-related variables, neglecting additional environmental variables that may confound OA effects. Here, we used an extensive array of sediment and bottom water parameters to evaluate pH effects on sediment microbial communities at hydrothermal CO 2 seeps in Papua New Guinea. The geochemical composition of the sediment pore water showed variations in the hydrothermal signature at seep sites with comparable pH, allowing the identification of sites that may better represent future OA scenarios. At these sites, we detected a 60% shift in the microbial community composition compared with reference sites, mostly related to increases in Chloroflexi sequences. pH was among the factors significantly, yet not mainly, explaining changes in microbial community composition. pH variation may therefore often not be the primary cause of microbial changes when sampling is done along complex environmental gradients. Thus, we recommend an ecosystem approach when assessing OA effects on sediment microbial communities under natural conditions. This will enable a more reliable quantification of OA effects via a reduction of potential confounding effects.
    Print ISSN: 0168-6496
    Electronic ISSN: 1574-6941
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...