GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-24
    Description: A discontinuous grid finite-difference (FD) method with non-uniform time step Runge–Kutta scheme on curvilinear collocated-grid is developed for seismic wave simulation. We introduce two transition zones: a spatial transition zone and a temporal transition zone, to exchange wavefield across the spatial and temporal discontinuous interfaces. A Gaussian filter is applied to suppress artificial numerical noise caused by down-sampling the wavefield from the finer grid to the coarser grid. We adapt the non-uniform time step Runge–Kutta scheme to a discontinuous grid FD method for further increasing the computational efficiency without losing the accuracy of time marching through the whole simulation region. When the topography is included in the modelling, we carry out the discontinuous grid method on a curvilinear collocated-grid to obtain a sufficiently accurate free-surface boundary condition implementation. Numerical tests show that the proposed method can sufficiently accurately simulate the seismic wave propagation on such grids and significantly reduce the computational resources consumption with respect to regular grids.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-30
    Description: In this study, we have systematically investigated the influence of the parameters of the slip-weakening law and the size of nucleation asperity on dynamic rupture of a planar fault in full-space and half-space using the boundary integral equation method, in particular, the occurrence conditions for subshear (or sub-Rayleigh for strike-slip rupture) and supershear ruptures. Besides the well-known rupture styles of subshear (or sub-Rayleigh) and supershear, we defined a new kind of rupture style in this study, termed the ‘self-arresting rupture’, for which the rupture process can be autonomously arrested by itself without any outside interference (e.g. a high strength barrier). Based on the vast number of simulations, we obtained rupture phase diagrams for strike-slip and dip-slip ruptures vertically and obliquely embedded in half-space and full-space with different buried depths. The rupture phase diagram clearly illustrates the occurrence conditions of three kinds of rupture styles and the transitions between them. In full-space, the supershear transition is sensitive with the fault width. Owing to the influence of the free surface, the rupture in half-space becomes much more complicated comparing to the one in full-space. For a strike-slip fault with zero buried depth, all ruptures that occur within the parameter range for sub-Rayleigh ruptures in full-space case become supershear ruptures. This means that as long as a rupture is able to grow incessantly, it will always evolve into a supershear rupture. For dip-slip faults, however, ruptures will always propagate with subshear speed, although slip rate could be almost twice that of a strike-slip fault. Although the influence of the free surface is strong, it is limited to very shallow ruptures (i.e. buried depth 〈1 km). The rupture phase diagram discussed in this study could provide a new insight on earthquake rupture mechanics.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-03
    Description: We propose an adaptive root-determining strategy that is very useful when dealing with trapped modes or Stoneley modes whose energies become very insignificant on the free surface in the presence of low-velocity layers or fluid layers in the model. Loss of modes in these cases or inaccuracy in the calculation of these modes may then be easily avoided. Built upon the generalized reflection/transmission coefficients, the concept of ‘family of secular functions’ that we herein call ‘adaptive mode observers’ is thus naturally introduced to implement this strategy, the underlying idea of which has been distinctly noted for the first time and may be generalized to other applications such as free oscillations or applied to other methods in use when these cases are encountered. Additionally, we have made further improvements upon the generalized reflection/transmission coefficient method; mode observers associated with only the free surface and low-velocity layers (and the fluid/solid interface if the model contains fluid layers) are adequate to guarantee no loss and high precision at the same time of any physically existent modes without excessive calculations. Finally, the conventional definition of the fundamental mode is reconsidered, which is entailed in the cases under study. Some computational aspects are remarked on. With the additional help afforded by our superior root-searching scheme and the possibility of speeding calculation using a less number of layers aided by the concept of ‘turning point’, our algorithm is remarkably efficient as well as stable and accurate and can be used as a powerful tool for widely related applications.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-20
    Description: The Cadzow rank-reduction method can be effectively utilized in simultaneously denoising and reconstructing 5-D seismic data that depend on four spatial dimensions. The classic version of Cadzow rank-reduction method arranges the 4-D spatial data into a level-four block Hankel/Toeplitz matrix and then applies truncated singular value decomposition (TSVD) for rank reduction. When the observed data are extremely noisy, which is often the feature of real seismic data, traditional TSVD cannot be adequate for attenuating the noise and reconstructing the signals. The reconstructed data tend to contain a significant amount of residual noise using the traditional TSVD method, which can be explained by the fact that the reconstructed data space is a mixture of both signal subspace and noise subspace. In order to better decompose the block Hankel matrix into signal and noise components, we introduced a damping operator into the traditional TSVD formula, which we call the damped rank-reduction method. The damped rank-reduction method can obtain a perfect reconstruction performance even when the observed data have extremely low signal-to-noise ratio. The feasibility of the improved 5-D seismic data reconstruction method was validated via both 5-D synthetic and field data examples. We presented comprehensive analysis of the data examples and obtained valuable experience and guidelines in better utilizing the proposed method in practice. Since the proposed method is convenient to implement and can achieve immediate improvement, we suggest its wide application in the industry.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-02-12
    Description: Differences between 3-D numerical predictions of earthquake ground motion in the Mygdonian basin near Thessaloniki, Greece, led us to define four canonical stringent models derived from the complex realistic 3-D model of the Mygdonian basin. Sediments atop an elastic bedrock are modelled in the 1D-sharp and 1D-smooth models using three homogeneous layers and smooth velocity distribution, respectively. The 2D-sharp and 2D-smooth models are extensions of the 1-D models to an asymmetric sedimentary valley. In all cases, 3-D wavefields include strongly dispersive surface waves in the sediments. We compared simulations by the Fourier pseudo-spectral method (FPSM), the Legendre spectral-element method (SEM) and two formulations of the finite-difference method (FDM-S and FDM-C) up to 4 Hz. The accuracy of individual solutions and level of agreement between solutions vary with type of seismic waves and depend on the smoothness of the velocity model. The level of accuracy is high for the body waves in all solutions. However, it strongly depends on the discrete representation of the material interfaces (at which material parameters change discontinuously) for the surface waves in the sharp models. An improper discrete representation of the interfaces can cause inaccurate numerical modelling of surface waves. For all the numerical methods considered, except SEM with mesh of elements following the interfaces, a proper implementation of interfaces requires definition of an effective medium consistent with the interface boundary conditions. An orthorhombic effective medium is shown to significantly improve accuracy and preserve the computational efficiency of modelling. The conclusions drawn from the analysis of the results of the canonical cases greatly help to explain differences between numerical predictions of ground motion in realistic models of the Mygdonian basin. We recommend that any numerical method and code that is intended for numerical prediction of earthquake ground motion should be verified through stringent models that would make it possible to test the most important aspects of accuracy.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-09-07
    Description: In this study, we present a new method for simulating the 3-D dynamic rupture process occurring on a non-planar fault. The method is based on the curved-grid finite-difference method (CG-FDM) proposed by Zhang & Chen and Zhang et al. to simulate the propagation of seismic waves in media with arbitrary irregular surface topography. While keeping the advantages of conventional FDM, that is computational efficiency and easy implementation, the CG-FDM also is flexible in modelling the complex fault model by using general curvilinear grids, and thus is able to model the rupture dynamics of a fault with complex geometry, such as oblique dipping fault, non-planar fault, fault with step-over, fault branching, even if irregular topography exists. The accuracy and robustness of this new method have been validated by comparing with the previous results of Day et al. , and benchmarks for rupture dynamics simulations. Finally, two simulations of rupture dynamics with complex fault geometry, that is a non-planar fault and a fault rupturing a free surface with topography, are presented. A very interesting phenomenon was observed that topography can weaken the tendency for supershear transition to occur when rupture breaks out at a free surface. Undoubtedly, this new method provides an effective, at least an alternative, tool to simulate the rupture dynamics of a complex non-planar fault, and can be applied to model the rupture dynamics of a real earthquake with complex geometry.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-01-22
    Description: In the U.S. forest products industry, wildfire is one of the leading causes of damage and economic losses. While individual wildfire behavior is well studied, new literature is emerging on broad-scale (e.g., county-level) wildfire risks. Our paper studies wildfire risks using crucial informational variables across both spatial units and time periods. Several statistical models are used to quantify the risks. We develop several maximum likelihood estimation methods to account for spatio-temporal auto-correlation in conditional risks. A group index insurance scheme is proposed, and its associated actuarially fair premium rates are estimated and presented. Implications for wildfire management policies are also discussed.
    Keywords: G22 - Insurance ; Insurance Companies, Q23 - Forestry
    Print ISSN: 0002-9092
    Electronic ISSN: 1467-8276
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-06-21
    Description: Perfectly matched layer (PML) is an efficient absorbing technique for numerical wave simulations. Since it appeared, various improvements have been made. The complex frequency-shifted PML (CFS-PML) improves the absorbing performance for near-grazing incident waves and evanescent waves. The auxiliary differential equation (ADE) formulation of the PML provides a convenient unsplit-field PML implementation that can be directly used with high order time marching schemes. The multi-axial PML (MPML) stabilizes the PML on anisotropic media. However, these improvements were generally developed for Cartesian grids. In this paper, we extend the ADE CFS-PML to general curvilinear (non-orthogonal) grids for elastic wave modelling. Unlike the common implementations to absorb the waves in the computational space, we apply the damping along the perpendicular direction of the PML layer in the local Cartesian coordinates. Further, we relate the perpendicular and parallel components of the gradient operator in the local Cartesian coordinates to the derivatives in the curvilinear coordinates, to avoid mapping the wavefield to the local Cartesian coordinates. It is thus easy to be incorporated with numerical schemes on curvilinear grids. We derive the PML equations for the interior region and for the free surface separately because the free surface boundary condition modifies the elastic wave equations. We show that the elastic wave modelling on curvilinear grids exhibits anisotropic effects in the computational space, which may lead to unstable simulations. To stabilize the simulation, we adapt the MPML strategy to also absorb the wavefield along the two parallel directions of the PML. We illustrate the stability of this ADE CFS-MPML for finite-difference elastic wave simulations on curvilinear grids by two numerical experiments.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...