GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ovid Technologies (Wolters Kluwer Health)  (2)
Material
Publisher
  • Ovid Technologies (Wolters Kluwer Health)  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2005
    In:  Circulation Research Vol. 97, No. 8 ( 2005-10-14), p. 821-828
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 97, No. 8 ( 2005-10-14), p. 821-828
    Abstract: Transforming growth factor-βs (TGF-βs) are pleiotropic cytokines involved in many physiological and pathological processes, including heart development and heart disease. Smad4 is the central intracellular mediator of TGF-β signaling. To investigate the function of Smad4 in heart development further, we generated a strain of cardiomyocyte-specific Smad4 knockout mice using the Cre– lox P system. Unexpectedly, the deletion of Smad4 in cardiomyocytes resulted in cardiac hypertrophy characterized by an increase in the size of cardiac myocytes, age-associated fibrosis, and reexpression of certain fetal genes. Approximately 70% of the Smad4 mutant mice died spontaneously between 5 and 12 months of age. Echocardiography and an invasive hemodynamic study of the left ventricle revealed markedly decreased cardiac contractility in Smad4 mutant mice compared with littermate controls. Moreover, phosphorylated extracellular signal–regulated kinase (ERK) 1/2 and mitogen-activated protein kinase–ERK (MEK) 1 were increased in the Smad4 mutants, suggesting that an upregulation of MEK1–ERK1/2 signaling as a consequence of deletion of Smad4 underlies the impaired cardiac function. These results reveal an important function of Smad4 in cardiac remodeling and suggest that an altered cellular response to TGF-β could be a mechanism by which cardiac myocytes undergo hypertrophy.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2005
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2016
    In:  Circulation Research Vol. 118, No. 3 ( 2016-02-05), p. 388-399
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 118, No. 3 ( 2016-02-05), p. 388-399
    Abstract: Aortic aneurysm is a life-threatening cardiovascular disorder caused by the predisposition for dissection and rupture. Genetic studies have proved the involvement of the transforming growth factor-β (TGF-β) pathway in aortic aneurysm. Smad4 is the central mediator of the canonical TGF-β signaling pathway. However, the exact role of Smad4 in smooth muscle cells (SMCs) leading to the pathogenesis of aortic aneurysms is largely unknown. Objective: To determine the role of smooth muscle Smad4 in the pathogenesis of aortic aneurysms. Methods and Results: Conditional gene knockout strategy combined with histology and expression analysis showed that Smad4 or TGF-β receptor type II deficiency in SMCs led to the occurrence of aortic aneurysms along with an upregulation of cathepsin S and matrix metallopeptidase-12, which are proteases essential for elastin degradation. We further demonstrated a previously unknown downregulation of matrix metallopeptidase-12 by TGF-β in the aortic SMCs, which is largely abrogated in the absence of Smad4. Chemotactic assay and pharmacologic treatment demonstrated that Smad4-deficient SMCs directly triggered aortic wall inflammation via the excessive production of chemokines to recruit macrophages. Monocyte/macrophage depletion or blocking selective chemokine axis largely abrogated the progression of aortic aneurysm caused by Smad4 deficiency in SMCs. Conclusions: The findings reveal that Smad4-dependent TGF-β signaling in SMCs protects against aortic aneurysm formation and dissection. The data also suggest important implications for novel therapeutic strategies to limit the progression of the aneurysm resulting from TGF-β signaling loss-of-function mutations.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2016
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...