GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ovid Technologies (Wolters Kluwer Health)  (2)
Material
Publisher
  • Ovid Technologies (Wolters Kluwer Health)  (2)
Language
Years
Subjects(RVK)
  • 1
    In: Neurology, Ovid Technologies (Wolters Kluwer Health), Vol. 98, No. 10 ( 2022-03-8), p. e1031-e1039
    Abstract: Alzheimer dementia is a complex clinical syndrome that can be defined broadly as an amnestic multidomain dementia. We previously reported human cortical proteins that are implicated in Alzheimer dementia. To understand the pathologic correlates of these proteins for underlying disease mechanisms, we investigated cortical protein associations with common age-related neuropathologies. Methods Participants were community-dwelling older adults from 2 cohort studies of aging and dementia. All underwent detailed annual clinical evaluations, and brain autopsies were performed after death. We use Alzheimer disease (AD) to refer to pathologically defined disease and Alzheimer dementia to refer to the clinical syndrome. Indices for AD, cortical Lewy bodies, limbic predominant age-related TAR DNA binding protein 43 encephalopathy neuropathologic changes (LATE-NC), hippocampal sclerosis, macroscopic infarcts, microinfarcts, cerebral amyloid angiopathy, atherosclerosis, and arteriolosclerosis were quantified during uniform structured neuropathologic evaluations. High-throughput protein abundances from frozen dorsolateral prefrontal cortex were quantified with mass spectrometry–based tandem mass tag proteomics analysis. Eleven human cortical proteins implicated in Alzheimer dementia, including angiotensin-converting enzyme, calcium-regulated heat-stable protein 1 (CHSP1), procathepsin H (CATH), double C2-like domain-containing protein α, islet cell autoantigen 1–like protein, serine β-lactamase–like protein LACTB, mitochondrial, pleckstrin homology domain–containing family A member 1, replication termination factor 2, sorting nexin-32, syntaxin-4, and syntaxin-6 (STX6), were previously identified with an integrative approach. Logistic regression analysis examined the association of protein expression with each of the neuropathologic indices. Results A total of 391 older adults were included. We did not observe associations of these protein targets with pathologic diagnosis of AD. In contrast, multiple proteins were associated with non-AD neurodegenerative and cerebrovascular conditions. In particular, higher CHSP1 expression was associated with cortical Lewy bodies and macroscopic infarcts, and higher CATH expression was associated with LATE-NC and arteriolosclerosis. Furthermore, while higher STX6 expression increased the risk of Alzheimer dementia, the protein was not associated with any of the neuropathologic indices investigated. Discussion Cortical proteins implicated in Alzheimer dementia do not necessarily work through AD pathogenesis; rather, non-AD neurodegenerative and vascular diseases and other pathways are at play. Furthermore, some proteins are pleiotrophic and associated with both neurodegenerative and cerebrovascular pathologies.
    Type of Medium: Online Resource
    ISSN: 0028-3878 , 1526-632X
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Neurology, Ovid Technologies (Wolters Kluwer Health), Vol. 102, No. 1 ( 2024-01-9)
    Abstract: Prior work suggests that cognitive resilience may contribute to the heterogeneity of cognitive decline. This study examined whether distinct cortical proteins provide resilience for different cognitive abilities. Methods Participants were from the Religious Orders Study or the Rush Memory and Aging Project who had undergone annual assessments of 5 cognitive abilities and postmortem assessment of 9 Alzheimer disease and related dementia (ADRD) pathologies. Proteome-wide examination of the dorsolateral prefrontal cortex using tandem mass tag and liquid chromatography-mass spectrometry yielded 8,425 high-abundance proteins. We applied linear mixed-effect models to quantify residual cognitive change (cognitive resilience) of 5 cognitive abilities by regressing out cognitive decline related to age, sex, education, and indices of ADRD pathologies. Then we added terms for each of the individual proteins to identify cognitive resilience proteins associated with the different cognitive abilities. Results We included 604 decedents (69% female; mean age at death = 89 years) with proteomic data. A total of 47 cortical proteins that provide cognitive resilience were identified: 22 were associated with specific cognitive abilities, and 25 were common to at least 2 cognitive abilities. NRN1 was the only protein that was associated with more than 2 cognitive abilities (semantic memory: estimate = 0.020, SE = 0.004, p = 2.2 × 10 −6 ; episodic memory: estimate = 0.029, SE = 0.004, p = 5.8 × 10 −1 ; and working memory: estimate = 0.021, SE = 0.004, p = 1.2 × 10 −7 ). Exploratory gene ontology analysis suggested that among top molecular pathways, mitochondrial translation was a molecular mechanism providing resilience in episodic memory, while nuclear-transcribed messenger RNA catabolic processes provided resilience in working memory. Discussion This study identified cortical proteins associated with various cognitive abilities. Differential associations across abilities may reflect distinct underlying biological pathways. These data provide potential high-value targets for further mechanistic and drug discovery studies to develop targeted treatments to prevent loss of cognition.
    Type of Medium: Online Resource
    ISSN: 0028-3878 , 1526-632X
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2024
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...