GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ovid Technologies (Wolters Kluwer Health)  (2)
Material
Publisher
  • Ovid Technologies (Wolters Kluwer Health)  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2023
    In:  ASAIO Journal Vol. 69, No. 10 ( 2023-10), p. 932-941
    In: ASAIO Journal, Ovid Technologies (Wolters Kluwer Health), Vol. 69, No. 10 ( 2023-10), p. 932-941
    Abstract: Computational fluid dynamics (CFD) is a powerful tool for the in-silico evaluation of rotodynamic blood pumps (RBPs). Corresponding validation, however, is typically restricted to easily accessible, global flow quantities. This study showcased the HeartMate 3 (HM3) to identify feasibility and challenges of enhanced in-vitro validation in third-generation RBPs. To enable high-precision acquisition of impeller torques and grant access for optical flow measurements, the HM3 testbench geometry was geometrically modified. These modifications were reproduced in silico , and global flow computations validated along 15 operating conditions. The globally validated flow in the testbench geometry was compared with CFD-simulated flows in the original geometry to assess the impact of the necessary modifications on global and local hydraulic properties. Global hydraulic properties in the testbench geometry were successfully validated (pressure head: r = 0.999, root mean square error [RMSE] = 2.92 mmHg; torque: r = 0.996, RMSE = 0.134 mNm). In-silico comparison with the original geometry demonstrated good agreement ( r 〉 0.999, relative errors 〈 11.97%) of global hydraulic properties. Local hydraulic properties (errors up to 81.78%) and hemocopatibility predictions (deviations up to 21.03%), however, were substantially affected by the geometric modifications. Transferability of local flow measures derived on advanced in-vitro testbenches toward original pump designs is challenged by significant local effects associated with the necessary geometrical modifications.
    Type of Medium: Online Resource
    ISSN: 1058-2916
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2023
    detail.hit.zdb_id: 2083312-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2021
    In:  ASAIO Journal Vol. 67, No. 10 ( 2021-10), p. 1148-1158
    In: ASAIO Journal, Ovid Technologies (Wolters Kluwer Health), Vol. 67, No. 10 ( 2021-10), p. 1148-1158
    Abstract: Computational fluid dynamics find widespread application in the development of rotary blood pumps (RBPs). Yet, corresponding simulations rely on shear stress computations that are afflicted with limited resolution while lacking validation. This study aimed at the experimental validation of integral hydraulic properties to analyze global shear stress resolution across the operational range of a novel RBP. Pressure head and impeller torque were numerically predicted based on Unsteady Reynolds-averaged Navier-Stokes (URANS) simulations and validated on a testbench with integrated sensor modalities (flow, pressure, and torque). Validation was performed by linear regression and Bland-Altman analysis across nine operating conditions. In power loss analysis (PLA), in silico hydraulic power losses were derived based on the validated hydraulic quantities and balanced with in silico shear-dependent dissipative power losses. Discrepancies among both terms provided a measure of in silico shear stress resolution. In silico and in vitro data correlated with low discordance in pressure ( r = 0.992, RMSE = 1.02 mmHg), torque ( r = 0.999, RMSE = 0.034 mNm), and hydraulic power losses ( r = 0.990, RMSE = 0.015W). PLA revealed numerically predicted dissipative losses to be up to 34.4% smaller than validated computations of hydraulic losses. This study confirmed the suitability of URANS settings to predict integral hydraulic properties. However, numerical credibility was hampered by lacking resolution of shear-dependent dissipative losses.
    Type of Medium: Online Resource
    ISSN: 1058-2916
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2021
    detail.hit.zdb_id: 2083312-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...