GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Hypertension, Ovid Technologies (Wolters Kluwer Health), Vol. 62, No. 4 ( 2013-10), p. 726-730
    Abstract: Hypertension is one of the major risk factors for chronic kidney disease. Using quantitative trait loci analysis, we identified the gene of the F-BAR protein NOSTRIN in the center of an overlapping region in rat and human quantitative trait loci that are associated with hypertension. Immunohistochemical analysis revealed a predominantly podocytic expression pattern of NOSTRIN in human and mouse glomeruli. Further, NOSTRIN colocalizes with cell–cell contact–associated proteins β-catenin and zonula occludens-1 and interacts with the slit-membrane–associated adaptor protein CD2AP. In zebrafish larvae, knockdown of nostrin alters the glomerular filtration barrier function, inducing proteinuria and leading to ultrastructural morphological changes on the endothelial and epithelial side and of the glomerular basement membrane of the glomerular capillary loop. We conclude that NOSTRIN expression is an important factor for the integrity of the glomerular filtration barrier. Disease-related alteration of NOSTRIN expression may not only affect the vascular endothelium and, therefore, contribute to endothelial cell dysfunction but might also contribute to the development of podocyte disease and proteinuria.
    Type of Medium: Online Resource
    ISSN: 0194-911X , 1524-4563
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2013
    detail.hit.zdb_id: 2094210-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2016
    In:  Journal of the American Society of Nephrology Vol. 27, No. 11 ( 2016-11), p. 3271-3277
    In: Journal of the American Society of Nephrology, Ovid Technologies (Wolters Kluwer Health), Vol. 27, No. 11 ( 2016-11), p. 3271-3277
    Abstract: Changes in metabolite levels of the kynurenine pathway have been observed in patients with CKD, suggesting involvement of this pathway in disease pathogenesis. Our recent genetic analysis in the mouse identified the kynurenine 3-mono-oxygenase (KMO) gene ( Kmo ) as a candidate gene associated with albuminuria. This study investigated this association in more detail. We compared KMO abundance in the glomeruli of mice and humans under normal and diabetic conditions, observing a decrease in glomerular KMO expression with diabetes. Knockdown of kmo expression in zebrafish and genetic deletion of Kmo in mice each led to a proteinuria phenotype. We observed pronounced podocyte foot process effacement on long stretches of the filtration barrier in the zebrafish knockdown model and mild podocyte foot process effacement in the mouse model, whereas all other structures within the kidney remained unremarkable. These data establish the candidacy of KMO as a causal factor for changes in the kidney leading to proteinuria and indicate a functional role for KMO and metabolites of the tryptophan pathway in podocytes.
    Type of Medium: Online Resource
    ISSN: 1046-6673 , 1533-3450
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2016
    detail.hit.zdb_id: 2029124-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of the American Society of Nephrology, Ovid Technologies (Wolters Kluwer Health), Vol. 32, No. 7 ( 2021-7), p. 1697-1712
    Abstract: Podocytes are critical to maintaining the kidney glomerular filtration barrier. Mutations in genes associated with development of nephrotic syndrome lead to elevated cytoplasmic calcium in podocytes and cause disruption of filtration barrier function. Whether calcium signaling plays a role in the initial formation of the filtration barrier is not known. Using live calcium imaging in two models, larval zebrafish and human kidney organoids, the authors demonstrate that podocyte calcium signaling is active during podocyte differentiation, is podocyte-cell autonomous, occurs independently of neighboring cell types, and is required for foot process and slit diaphragm formation. Their findings also show that developmental calcium signaling occurs by a different mechanism than disease-associated calcium perturbations, and represents a critical regulatory signal for podocyte morphogenesis and filtration barrier formation. Background Podocytes are critical to maintaining the glomerular filtration barrier, and mutations in nephrotic syndrome genes are known to affect podocyte calcium signaling. However, the role of calcium signaling during podocyte development remains unknown. Methods We undertook live imaging of calcium signaling in developing podocytes, using zebrafish larvae and human kidney organoids. To evaluate calcium signaling during development and in response to channel blockers and genetic defects, the calcium biosensor GCaMP6s was expressed in zebrafish podocytes. We used electron microscopy to evaluate filtration barrier formation in zebrafish, and Fluo-4 to detect calcium signals in differentiating podocytes in human kidney organoids. Results Immature zebrafish podocytes (2.5 days postfertilization) generated calcium transients that correlated with interactions with forming glomerular capillaries. Calcium transients persisted until 4 days postfertilization, and were absent after glomerular barrier formation was complete. We detected similar calcium transients in maturing human organoid glomeruli, suggesting a conserved mechanism. In both models, inhibitors of SERCA or IP3 receptor calcium-release channels blocked calcium transients in podocytes, whereas lanthanum was ineffective, indicating the calcium source is from intracellular podocyte endoplasmic-reticulum stores. Calcium transients were not affected by blocking heartbeat or by blocking development of endothelium or endoderm, and they persisted in isolated glomeruli, suggesting podocyte-autonomous calcium release. Inhibition of expression of phospholipase C- γ 1, but not nephrin or phospholipase C- ε 1, led to significantly decreased calcium activity. Finally, blocking calcium release affected glomerular shape and podocyte foot process formation, supporting the critical role of calcium signaling in glomerular morphogenesis. Conclusions These findings establish podocyte cell–autonomous calcium signaling as a prominent and evolutionarily conserved feature of podocyte differentiation and demonstrate its requirement for podocyte foot process formation.
    Type of Medium: Online Resource
    ISSN: 1046-6673 , 1533-3450
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2021
    detail.hit.zdb_id: 2029124-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...