GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ovid Technologies (Wolters Kluwer Health)  (2)
Material
Publisher
  • Ovid Technologies (Wolters Kluwer Health)  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2011
    In:  Epidemiology Vol. 22 ( 2011-01), p. S165-
    In: Epidemiology, Ovid Technologies (Wolters Kluwer Health), Vol. 22 ( 2011-01), p. S165-
    Type of Medium: Online Resource
    ISSN: 1044-3983
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2011
    detail.hit.zdb_id: 2042095-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2009
    In:  Circulation Vol. 120, No. 7 ( 2009-08-18), p. 617-627
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 120, No. 7 ( 2009-08-18), p. 617-627
    Abstract: Background— Response gene to complement 32 (RGC-32) is induced by activation of complement and regulates cell proliferation. To determine the mechanism of RGC-32 in angiogenesis, we examined the role of RGC-32 in hypoxia-related endothelial cell function. Methods and Results— Hypoxia/ischemia is able to stimulate both angiogenesis and apoptosis. Hypoxia-inducible factor-1/vascular endothelial growth factor is a key transcriptional regulatory pathway for angiogenesis during hypoxia. We demonstrated that the increased RGC-32 expression by hypoxia was via hypoxia-inducible factor-1/vascular endothelial growth factor induction in cultured endothelial cells. However, overexpression of RGC-32 reduced the proliferation and migration and destabilized vascular structure formation in vitro and inhibited angiogenesis in Matrigel assays in vivo. Silencing RGC-32 had an opposing, stimulatory effect. RGC-32 also stimulated apoptosis as shown by the increased apoptotic cells and caspase-3 cleavage. Mechanistic studies revealed that the effect of RGC-32 on the antiangiogenic response was via attenuating fibroblast growth factor 2 expression and further inhibiting expression of cyclin E without affecting vascular endothelial growth factor and fibroblast growth factor 2 signaling in endothelial cells. In the mouse hind-limb ischemia model, RGC-32 inhibited capillary density with a significant attenuation in blood flow. Additionally, treatment with RGC-32 in the xenograft tumor model resulted in reduced growth of blood vessels that is consistent with reduced colon tumor size. Conclusions— We provide the first direct evidence for RGC-32 as a hypoxia-inducible gene and antiangiogenic factor in endothelial cells. These data suggest that RGC-32 plays an important homeostatic role in that it contributes to differentiating the pathways for vascular endothelial growth factor and fibroblast growth factor 2 in angiogenesis and provides a new target for ischemic disorder and tumor therapies.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2009
    detail.hit.zdb_id: 1466401-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...